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Early men of the Clovis culture appeared in North America some 12000 years ago, when the sea level was still very 
low. What is more reasonable than to suppose such men ranged over the forested lowland that is now continental 
shelf? ... How were they to know or care that in a few thousand years the area was to be drowned by the advancing 
sea, any more than New Yorkers know or care that when the remaining glaciers melt, the ocean will rise to the 20th 
story of their buildings?      K. O. Emery, Scientific American September 1969 
 
 
Abstract 
 
 Sand transport processes and sediment and bedform dynamics are reviewed with 
emphasis on the measured processes on the shoreface between the seaward edge of the surfzone 
and the upper continental shelf on time scales from seconds to a year. The studies reviewed here 
were done off California, in the northern Gulf of Mexico, at Nova Scotia, on the Ebro delta, at 
Duck, New Jersey, southeastern Australia and New Zealand, and in the North sea off the UK, 
Belgium and the Netherlands. Each environment has its own specific forcings and processes, 
which emphasises the need for long-term synchronous field measurements of various parameters 
at the site of interest. In general, bedload transport is more important than suspended load 
transport except during severe storms or swell. Various types of ripples prevail, but in the heavy 
storms the (transition to) upper plane bed states do occur at water depths far beyond the depth of 
morphological closure of the surfzone. 
 The number of  studies is sufficient to identify a number of shortcomings of present 
knowledge: 

i. for the shoreface conditions, shear stress and hydraulic roughness models give widely 
varying results and have not been tested and calibrated a range of datasets; this leads to 
high uncertainties concerning the bed shear stress components for sediment transport; 

ii. there are many environments in which neither waves nor currents dominate but 
interactions between waves and currents are not well understood; 

iii. there is no concensus on definitions of bedforms and states, especially in conditions with 
both waves and currents; in addition the genesis of a number of bed states is not well 
understood; 

iv. coastal, near-bed density-driven currents derived from riverine fresh-water outflow can 
cause a net shoreward current with a potentially first-order effect on annual sediment 
transport, but this effect has not been quantified empirically; 

v. the exchange of sediment between surf zone, shoreface and shelf may be important for 
coastal sediment budgets on longer time scales (decades), but virtually nothing is known 
about the magnitude and the direction of the net exchange (for different grain sizes); 

vi. there are very few datasets with measurements of both bedload and suspended load 
transport and hydrodynamics at high near-bed resolutions, and none that allow the 
probabilistic integration to annual transport on the shoreface. 
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1. Introduction 
 

The objective of this report is to review the sand transport processes and related bed states 
in inner, shallow shelf regions and on the shoreface seaward of the surfzone. The dynamics of 
this region, and the exchange of sediment with the surfzone, are largely unknown. It is only in the 
past decade that a number of datasets were published that include wave and flow dynamics, 
suspended sediment concentrations as well as bedform dynamics and derived bedload transports. 
The datasets have been collected in various environments with different dominant forcings. It is 
the question to what extent the insights obtained in one environment are generically applicable to 
other environments. The insights from the available datasets will be discussed thematically to 
identify gaps in the generic knowledge. 

The background for this review is the planned SANDPIT measurement campaign off the 
Dutch coast. In the near future sand mining will be required for nourishing beaches for coastal 
protection against the effects of the changing climate and the sealevel rise, and for land 
reclamation. The objective of SANDPIT is to improve sand transport- and morphodynamic 
models for the middle and lower shoreface, in order to facilitate the assessment of sand mining 
effects on coastal behaviour. The nearer to the coast a pit is dredged, the higher the danger of 
coastal erosion due to the local sand extraction. On the other hand, the further from the coastline 
the dredging is carried out, the higher the costs. The SANDPIT project undertakes the 
development and testing of models to assess the near- and far-field effects of sand mining on the 
shoreface. In an extensive field campaign the wave and flow conditions as well as the sediment 
transport will be measured for a year to investigate the near-bed sediment dynamics and to 
provide data for boundary conditions and for validation of the models. 

This review is organised as follows. First a general introduction and definitions of the 
shelf region and shoreface are given, and the main forcings and boundary conditions identified. A 
regional overview is given of available datasets in the appendix, as well as the main findings for 
each region. Based on the appendix, the observed processes are discussed and hiates in 
knowledge are identified. It it then discussed how this knowledge can be applied generically to 
other sites, especially in Europe. One potential way is with shear stress and sediment transport 
models, so comparisons between model results and the field data are summarised. After this, the 
observations of bedforms and bed states is summarised. This was done after the discussion of 
model tests, because the interpretation and modelling of bed states and bedform dimensions 
appears to be dependent on shear stress models. Finally a look forward is given to the SANDPIT 
field site and measurements, and based on the review a number of working hypotheses is 
formulated. More general scientific conclusions and recommendations are given in the final 
section. Most sections can be read independent of other sections, except the SANDPIT discussion 
for which the description in the appendix of studies off the Dutch coast is the background. 
 
 

1.1. Forcings on a geological scale 
 

The shoreface is defined here as the realm in which waves are shoaling but not breaking 
in rather high-energy conditions (see figure 1) (Vincent 1986), while this is only the case for the 
inner shelf in extreme high-energy conditions. In many cases the transition from inner shelf to 
shoreface is not gradual but shows a distinct break in the bathymetry. 
 



 4

 
Figure 1. Definition sketch of the shoreface and inner shelf regions (Vincent 1986). 
 
 

The shelf is bound at the ocean-side by the continental slope. The break between the shelf 
and the continental slope occurs at a depth of 40 m to 500 m below sealevel but on average at 
130 m depth. At the lower end of the slope is the continental rise, which may be a deposit from 
sediments coming over the shelf edge and from erosion of the continental slope. The average 
slope of the continental slope is 0.0070, while that of the shelf is only 0.0017 (Encyclopedia 
Britannica 1990, vol. 25 p. 156). The world-wide average width of the continental shelf is 75 km, 
but varies from almost nothing (e.g. off Florida and Portugal) to 500 km (e.g. off Patagonia, off 
the most northern continents and the Great Australian Bight). Locally, there may be submarine 
valleys from glacial scour (e.g. off Norway), drowned rivers and river deltas (e.g. the Ganges fan 
in the Bay of Bengal) or extended fjords (e.g. Scripps Canyon off California). Some shelves are 
bound at the landward side by rocky coasts (e.g. New Zealand) or by soft sedimentary lowlands 
(e.g. The Netherlands). Obviously the depth, width and exposure to open ocean of the inner shelf 
are important boundary conditions for wave shoaling, amplification of the vertical tide and 
structure of the (horizontal) tidal currents. 

During the glacials of the Quarternary (past 2.5 Myr) the sealevel fluctuated about 100 m 
globally between lowstand and highstand (present) positions. The shelves themselves have been 
affected by approximately 23 major sealevel fluctuations in the relatively short period of 2.5 Myr. 
This has had a profound effect on the shelf surface, which has been reworked by seawaves in 
surfzones ‘passing by’ and by currents as well as by continental processes like fluvial and glacial 
erosion and deposition (e.g. Pleistocene Rhine deposits off the Dutch coast). This climatic control 
is probably not entirely unique in the history of the Earth, but was not very common either. The 
reason is that at least a certain configuration of the continents is required for the solar irradiation 
due to Milankovitch orbital fluctuations to become effective enough for global cooling and 
sealevel lowering. Extended periods of either highstand or lowstand sealevels may have resulted 
in profoundly different shelf environments. It may have taken the many sealevel fluctuations to 
arrive at the morphology of the present shelves, and such energetic conditions may not have 
prevailed in extended periods with highstand or lowstand sealevels. 

Near the present Dutch coast, a barrier system formed in the North Sea basin from fluvial 
sand, older transgressive sediments from previous transgressions. During the sealevel rise, the 
transgression involved continuous reworking of this sediment (Beets et al. 1995, Cleveringa 
2000). In some parts of the shoreface, there is still sediment left in the bed from the barrier coast 
in an earlier stage. In other places, lag deposits are found which originate from winnowing of 
fines in higher-energy wave conditions at lower sealevels. Thus the present seabed sediment 
comes from different sources and has been subjected to many different forcings, which changed 
over time. The Holocene transgression changed the geometry and depth of the North Sea. The 
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consequences were modelled by De Kok (1994), Van der Molen and Van Dijck (2000), Van der 
Molen and De Swart (2001a,b). The dominant wave-induced sand transport mode changed from 
suspended load (before 6 kyr BP) to bedload due to the increasing water depth, and the overall 
wave-induced bedload transport direction in the later period was offshore for the Dutch coast. 
Since the landbridge between Britain and the continent opened (See e.g. Gibbard 1995) and the 
northern tidal influence increased, the tidal currents increased and changed from cross-shore to 
shore parallel. Although based on modelling, these patterns supposedly affected the sand supply 
to the coast (De Kok and Van der Molen and coworkers).  

Summarising, forcings on geological temporal and spatial scales have been determined in 
the geological history of the region. These forcings are the boundary conditions for the present-
day spatial and time scales of interest. Boundary conditions are the form of the basin or ocean 
(determining tidal amplifications and currents), the exposure to wind (fetch length for waves), the 
exposure to swell waves, the bathymetry of the inner shelf and shoreface (determining tidal 
currents and wave shoaling) and the composition of the sea bed.  
 
 

1.2. Present-day processes and forcings 
 

The present-day forcings on the shelf are wind and storm waves, swell waves, tides and 
fluvial inflow. In more detail, the following processes contribute to the net water motion in these 
regions: 
 
1. Waves and wave-driven currents 
2. Wind-driven currents and related upwelling and downwelling 
3. Tidal currents and tidal asymmetry 
4. Temperature- driven currents 
5. Saline density-currents from fluvial fresh water inflow 
 

Tidal, wave-driven, wind-driven and density-driven currents may dominate the flow 
during most of the year, whereas seawaves and seawave-driven currents only act on the bed in 
higher-energy conditions. The surfzone is the region where the waves start to break.  

In the surfzone, morphological changes usually are large throughout the year, but taper off 
seaward of the breaking waves. This activity can be represented as an enveloping band around the 
mean bed level, in which bar migration and large-scale erosion or sedimentation cause 
fluctuations in the order of meters. Seaward, this band of activity tapers off to the so-called depth 
of closure, where morphological change is no longer measurable. The depth of closure is related 
to the time-scale of the measurements and to the measurement accuracy (Hoekstra et al. 1999). 
For example, the depth of closure at the Dutch coast at the time-scale of several years is 6-7 m 
below sealevel, while at the time-scale of the Holocene it extends as far seawards as the Strait of 
Dover. Changes smaller than 0.05-0.1 m usually cannot be detected with the current 
echosounding technology. 

The absence of morphological change, however, does not mean that there is no sediment 
activity and no net sediment transport. Any activity may lead to exchanges of sediment between 
the shelf, the shoreface and the surfzone. Knowledge of the processes at the interface between 
these zones may therefore be important for long-term coastal sediment budget studies. This need 
not be limited to cross-shore sediment movement, but also extends to longshore sediment 
movement. Gradients in longshore sediment transport near the seaward boundary of the surfzone 
(where there is significant exchange between the surfzone and the upper shoreface) may also be 



 6

important for the coastal sediment budget (e.g. off The Netherlands, Van Rijn 1997). 
Wright et al. (1991) formulated four working hypotheses for cross-shore sediment 

transport on the shoreface and upper shelf, partly based on the sediment conservation law: 
1. cross-shore transport is produced by a combination of wave-, current-, and gravity-

induced advective processes as well as by diffusive processes; 
2. the relative contributions made by the different transport mechanisms vary temporally; 
3. the frequencies of occurrence of the different transport mechanisms vary spatially as 

functions of regional shelf configuration and energy climate; and 
4. equilibrium over periods of years or decades implies that the sum of all onshore sediment 

fluxes is equal to the sum of all offshore sediment fluxes. 
These will be extended and refined in the section on the SANDPIT project for the Dutch coast 
based on the literature review in the next chapters. 
 
 

1.3. Scope of this review 
 

This review is limited in scope as follows. The time scale of processes and phenomena of 
interest ranges from seconds to years. Since more sophisticated measurement techniques became 
available only very recently, the review is heavily biased to publications of the last 10 years. The 
emphasis is on the upper shoreface, ranging from the seaward side of the surfzone to the inner 
shelf, whereas studies on the surf zone and on (laboratory) experiments are mostly ignored. 
Interactions between the surfzone itself and the shoreface are summarised as well as far as these 
were covered in the literature. Local features and short-term processes (100-101 m, seconds-
hours) on the shoreface are identified that potentially can be extrapolated to a regional scale (102-
103 m) and the annual time scale. 

This means for instance that bedforms are included but shoreface connected ridges are 
excluded. Shoreface-connected ridges and other sand banks have a migration celerity in the order 
of one meter per year, while much more sediment is bypassed over the ridges in the form of 
migrating small-scale bedforms and suspended sediment transport (e.g. Van de Meene 1994, Van 
Lancker et al. 2000). The stability of these features is related to tidal current patterns (e.g. Stride 
1982, Trowbridge 1995, Hulscher and van den Brink 2001) at a larger spatial scale than of 
interest here. In addition, they are therefore morphologically almost inactive on the time scale of 
interest and are therefore considered as morphological boundary conditions. For a review on the 
origin, classification and modelling of sand banks and ridges one is referred to Dyer and Huntley 
(1999). 

The sediment type determines which processes can take place and are dominant. For 
instance, on muddy shelves, suspension may become so important that the mud becomes fluid 
and may even damp the turbulence significantly. This review is focussed on sandy shelves like 
the North Sea (where the SANDPIT field measurements are planned), possibly with a minor 
fraction of silt and clay, and also on coasts where the shelf is muddy but the shoreface is sandy. 
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2. Synthesis of sediment transport 
 

A number of field datasets were identified in the literature. Because of the practical 
difficulties in measuring bedload sediment transport, most workers concentrated on measuring 
suspended sediment concentrations. The studies for each site are discussed together in the 
appendix. Table 1 (back of document) gives an overview of the datasets for the temporal and 
spatial scales of interest. The key parameters of the datasets and field sites are given in terms of 
wave and tidal conditions and sediment composition, and coded for further discussions. The 
ordering of studies and datasets in the appendix is done by region, from shallow to deep water 
and from early to recent publication date. Numbers in the text below refer to these studies (e.g. 
N2 refers to the second study off the Dutch coast given in the appendix). 

The sophistication of the instruments has obviously consequences for the validity of the 
conclusions. Two electromagnetic current meters sample the flow profile in much less detail than 
an acoustic device that covers the profile at numerous levels above and very near the bed. 
Moreover, certain phenomena may simply be missed or misinterpreted with the former method. 
In addition, Osborne and Vincent (1996) warn that the position of high-resolution concentration 
and velocity sensors relative to the underlying bedforms is important: the phase relationship is 
such that it could give completely opposite transport values depending on the relative position. 

The datasets reviewed in the appendix (see table 1 at the back of the report) exhibit a 
manifold of sediment transport driving forces and combinations of these forces. In addition, the 
forces vary with conditions, such as storm, swell or fair weather, or varying river discharge, or 
wind directions. Yet, some patterns seem to emerge in a thematic and geographical sense. 
 
 

2.1. Directions of transport components outside the surfzone and in deep water 
 

At the seaward boundary of the surf zone, the net suspended sediment transport during 
storms is seaward due to undertow, gravity transport or (decoupling) long waves at the New 
Zealand, Australia, Dutch and Duck sites. The relative contributions of these mechanisms are 
uncertain and depend on the local conditions. The undertow and the gravity effect always give 
seaward suspended transport, but the long waves may also give a landward component depending 
on phase lags in suspension and long wave orbitals. The presence of ripples may cause important 
phase lag effects between gravity waves and suspension, which can also lead to reverse net 
suspended transport directions (see chapter on bedforms). 

The bedload transport on the other hand is often in the landward direction, as inferred 
mostly from ripple migration directions, and dominates in fair weather (Nova Scotia, Australia, 
Duck) due to wave asymmetry and possibly (that is, theoretically but not observably) Longuet-
Higgins streaming and gravity-driven transport. It must be noted that the contributions of the 
latter two are theoretical and probably very small, but have never been quantified in 
measurements. In fair weather and swell waves off Duck, the suspended sediment was also 
directed landward. When swell waves interact with sea waves, the orbital velocities become 
skewed due to spectral bimodality (Nova Scotia site, Crawford and Hey 2001) and the bedload 
transport is seaward, while it is landward in sea waves only. With increasing wave asymmetry, 
the shear stresses during flow reversal were found to be oppositely directed in the near-bed (2 
cm) layer and just above (in O2). The consequences for net transport directions are not known. 

In special cases, mega-rip currents may drive seaward transport far beyond the surfzone 
(Short 1985). When nearshore and/or embayment topography prevents the development of a fully 
dissipative beach, large rip currents may be initiated that increase in strength and spacing as the 
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offshore wave height increases. They were observed on Narrabeen Beach (Australia), Scripps 
(USA), and Japan under breaking waves higher than 3 m. The rip currents developed flow 
velocities of 2-3 m/s and extended beyond 1 km offshore while the outer breaker zone ended only 
at about 300 m offshore. 

At larger water depths, the cross-shore bedload transport also was landward while the 
suspended sediment transport was seaward (New Jersey). However, the bedload transport was 
seaward during heavy storms on the British North Sea shelf. At most sites, however, the 
dominant bedload transport vector is in the longshore direction due to tidal currents (e.g. North 
Sea). 

At the Dutch Terschelling site (and probably along the Holland coast and at Duck, New 
Jersey  (see figure 2) and Nova Scotia as well), there is a delicate balance with no significant 
cross-shore sediment transport at the seaward boundary of the surfzone. However, there is a 
strong tide-, wind- and wave-driven longshore sediment transport. Net loss or gain of sediment in 
coastal stretches may be related to gradients in longshore sediment transport: a zone with large 
transport relative to its upstream boundary may lead to erosion of that zone. This is at least the 
case in the surfzone, but possibly also just outside the surfzone. 
 

 
Figure 2. Comparison of the observed relative contributions of mean flows, high-frequency 
waves and low-frequency effects on the cross-shore sediment flux computed from the products of 
instantaneous suspended concentration and cross-shore velocity (Wright et al. 1991, figure 30). 
 
 

In general, cross-shore sediment transport components seem to be well balanced. The 
bedload transport is usually shoreward whereas the suspended transport often is seaward at the 
seaward boundary of the surfzone, depending on the presence of ripples (see chapter on 
bedforms). The net transport is in the longshore direction of the tidal currents. The dominant 
transport mode at deep water (>10 m deep) is bedload (ripple and other bedform migration) 
during low and moderate energy conditions, whereas in the annually highest energy conditions 
the sheet flow regime with dominantly suspended load transport is attained in the direction of the 
net (wave-, wind- and tide driven) currents. So in deeper water the suspended load transport is 
often in the landward direction (except over heavily rippled beds). 
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2.2. Wave groups 
 
 It is well known that infragravity waves may determine the direction of wave-driven 
suspended sediment transport, whether they are coupled to the gravity wave field (outside the 
surfzone) or decoupled (inside the surfzone) (Ruessink 1998). In addition, recent measurements 
of intrawave flow and suspension (Williams et al. 2002, Vincent and Hanes 2002) demonstrate 
that groupiness of waves at large water depths has a significant increasing effect on suspended 
concentrations (see figure 3). Williams et al. found an increase of a factor 3 at 20 m water depth. 
Vincent and Hanes found comparable experimental results for shallower water with a wave 
record from Duck. Due to the time lag of suspended settling, the subsequent large waves in the 
group are able to increasingly suspend sediment, called ‘pumping up’ mechanism. In addition, 
the net settling velocity of the sediment is decreased by the near-bed flow. 
 

 
Figure 3. Effect of wave groups on the suspended sediment load as measured in the lab (open 
dots) and modelled (lines, dashed lines represent one standard deviation) by Vincent and Hanes 
(2002, their figure 7). The increasing concentration towards the end of the wave groups is due to 
the pumping up effect. 
 
 

2.3. Wave-current interactions 
 

The effect of combined waves and current on the flow velocities is that the near-bed 
velocities decrease due to the apparent roughness, which is created by the non-linear coupling of 
the waves and current and must be added to the roughness from ripples, bedload transport and 
grains (see Nielsen 1992, Van Rijn 1993, Fredsøe et al. 1999, Houwman 2000 for reviews). In 
general, the near-bed shear velocities are decreased by the addition of apparent roughness from 
wave-current interaction, especially for weak currents and high waves. From laboratory work it is 
clear that the angle between waves and currents is extremely important; opposing currents reduce 
the shear velocities even further, while perpendicular waves and current give the largest reduction 
(Van Rijn 1993). However, measurements of these effects in the field are scarce because detailed 
and accurate velocity profiles are needed to very small distances near the bed. An additional 
problem is that most analyses of wave-current interactions are based on models that predict the 
other factors contributing to the roughness, while different models are largely at variance with 
each other (see chapter on modelling). 

Wave-current interactions were found to be important at the seaward boundary of the 
surfzone of Duck, where the presence of waves decreased the (modelled) net sediment transport 
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with a factor two compared to the net tidal current only. This effect was probably also found on 
the British North Sea shelf, where the tidal flow (measured at a few vertical positions only) just 
above the wave boundary layer was retarded due to an apparent roughness from wave-current 
interaction in the boundary layer. This agrees with findings on the Nova Scotia shelf, where the 
current felt an apparent roughness due to waves which was an order of magnitude larger than the 
roughness of ripples, bedload and grains. However, these results were obtained with low 
(vertical) resolution measurements and with modelling.  

At Nova Scotia, the wave-current interaction was found to increase the grain shear stress 
within the wave boundary layer, based on a combination of modelling and measurements (with 
low vertical resolution) (Li et al. 1997). When either waves or currents are weak, the 
enhancement was limited to only 5%, while it was 20% with equal wave and current shear 
stresses in the same direction (within 30°). For waves and currents perpendicular, the shear stress 
enhancement again was only 5%.  

Note that the reaction of shear stress above and within the wave boundary layer are 
opposite: the velocity above the boundary layer is smaller in wave-current interaction due to 
increased apparent roughness, whereas the shear stress is larger within the boundary layer. This is 
important for bedload transport and reference concentrations: the net suspended flux is also 
smaller in wave-current interaction, whereas the bedload transport and reference concentration 
are larger within the boundary layer. This seems to be the case for a weak current with colinear 
waves, whereas the effects are less well known in orthogonal waves and currents. 

The friction by wave, current or combined wave-current ripples dominantly contributes to 
hydraulic roughness, whereas the bedload-related friction is smaller though significant, and only 
is dominant in sheet flow conditions when ripples are absent. In addition, bedload-related 
roughness in the presence of waves is one order of magnitude larger than in currents only. 

Usually the role of waves in sediment transport is the suspension of sediment, which is 
then advected by net tidal, wind-driven or wave-driven currents (e.g. Vincent et al. 1998). This is 
especially the case when wave ripples are present. Interestingly, the wave-current interactions 
seem to vary between swell and storm conditions at Duck (Lee et al. 2002). During swell, 
vortices shed from small ripples enhanced the exchange above and below the wave boundary 
layer, leading to higher sediment concentrations above the boundary layer in swell than in storm. 
In storm conditions on the other hand, strong currents prevented the vortices from extending 
beyond the boundary layer. These findings, although speculative due to low vertical resolution of 
measured velocities, suggest that there is a complex interaction between ripples, the wave 
boundary layer and the overlying currents. Lee et al. suggested that the exchange would have 
been larger for larger ripples. Also Smyth et al. (2002) found evidence of vortex shedding in 
turbulence measurements over ripples in various conditions off Nova Scotia. These findings seem 
to confirm those of Lee et al. for the swell case without wind-generated currents above the wave 
boundary layer. Thorne et al. (2002) presented large-scale laboratory experiments with irregular 
non-breaking waves in a 4.5 m deep flume (no currents). The velocity and concentration profiles 
were measured in much more detail than at Duck. They concluded that the time-averaged 
concentration in the near-bed layer of twice the ripple thickness is best modelled with pure 
diffusion, whereas above this layer a combination of convection and diffusion (Nielsen 1992) or 
pure convection gave much better results.  

In conclusion, the wave-current interaction at various strengths and directions of waves 
and currents are not well understood, and it is not clear when the grain shear stress plus bedload 
shear stress component is enhanced or retarded by the interaction. Yet this may have a first-order 
effect on the shear stress. It is also unclear how the increasing vortex shedding in increasing 
ripple height interacts with currents above the wave boundary layer. 
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2.4. Influence of rivers 
 

Over time, rivers have delivered enough silt and clay sediment for the formation of a mid-
shelf mud belt off California, possibly in the Gulf of Mexico and also off the Ebro delta (Puig et 
al. 2001), where the conditions (deep waters and sheltered conditions, respectively) favour 
deposition of this fine material. For the present study, the mud and sand delivery at that time 
scale can be neglected and the presences of the mudbelt can be taken as it is. In what follows, the 
location of the rivers is assumed to be in temperate climate zones, and only indirect effects on the 
flow will be considered. 

The presence of fresh water, on the other hand, may have an effect on sediment transport 
on the shoreface. In the North Sea basin the river Rhine delivers enough fresh water to generate 
density-driven shoreward currents. These currents may cause a significant shoreward sediment 
transport (on the annual scale) outside the surfzone in water depths at least up to 20 m, although 
this has not yet been demonstrated with measurements. Van Rijn (1997) computed for the Dutch 
coast that the contribution of density-driven flow to the cross-shore sediment transport is of the 
same order  and at least of secondary importance compared to tidal and wave-driven net cross-
shore sediment transport. The Rhine ROFI (Region Of Freshwater Influence, where freshwater is 
found) extends along most of the western coast of the Netherlands, especially when the discharge 
is high, during neap tides and when sea waves are small (De Ruijter et al. 1992, 1997). Note that, 
if the ROFI is not kept in nearshore regions but allowed to disperse ofshore, then there will be no 
landward density-driven current.  

The density stratification by the Rhine river plume is far from uniform. Apart from 
variations in river discharge, wind and wave conditions, there are two regular variations in the 
stratification. The first is a semidiurnal oscillation between a highly stable stratification and 
nearly full vertical mixing due to tidal straining (Simpson and Souza 1995), which takes place in 
the Rhine ROFI and elsewhere. The second is a tidal modulation of the river discharge leading to 
a pulsed discharge of fresh water and consequently a train of fresh water lenses. 

It is conceivable that the density-driven current is more important in wet years with higher 
river discharge or with higher discharge peaks (see figure 4). Since the weather pattern 
responsible for the high discharges is not completely unrelated with the weather pattern 
responsible for storms, there might even be a (decadal?) correlation between storm events and 
high density-driven currents. This was found at Duck, where winter rains increased the fresh 
water input, while the wind direction allowed the buoyant plume to detach from Chesapeake Bay. 
It was also found to a limited extent on the mid-shelf off the Ebro delta, where the period of 
highest river flows and sediment discharges coincides with the most energetic wave conditions. 
However, density-driven currents of the fresh-water outflow of the Ebro river were not identified 
(Puig et al. 2001). This may be due to the relatively low average discharge (300-600 m3/s) 
compared to the Rhine (2350 m3/s) and the larger water depth. The presence of a weather pattern 
in the discharge and ROFI of the Rhine would also suggest that the ROFI will be affected by 
changes in river discharge due to climatic change. Although the effect is probably of secondary 
importance, climatic change may thus affect the sediment dynamics on the Dutch shoreface. On 
the other hand, climatic change may also lead to different storm patterns, while storm waves 
decrease density stratification. 
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Figure 4. Low-pass filtered cross-shore (residual) current components in comparison  with wind 
speed and river discharge of the Rhine for a full year. There seems to be a correlation between the 
peaks in river discharge and near-bed residual current, although the wind direction determines in 
part whether stratification can occur (Van der Giessen et al. 1990, figure 11). 
 
 

Concluding, density-driven currents by fresh river water from moderate to large rivers 
may significantly affect the annual cross-shore sediment transport on the shoreface, but whether it 
is a first or second order effect is unknown. There may be strong seasonal and short-term 
temporal patterns, and potentially longer-term climatic effects although nothing is known about 
this. Spatial patterns may be due to the variations in river discharge, due to topographic features 
and also due to systematic changes in wind stress along the coastline (Samelson et al. 2002).  
 
 

2.5. Graded sediment sorting 
 

When the sea-bed sediment is graded, then the finer part is more often suspended and may 
be transported in different directions than the coarser part. In and just outside the surfzone this 
lead to a sea-ward fining trend on the Dutch and Duck shorefaces. Also on the tops of local 
topographic highs (e.g. shoreface-connected ridges off the Dutch coast) the sediment is coarser 
and better sorted due to increased winnowing by wave action (e.g. Van de Meene 1994). 

There are indications from riverine literature that unimodal sediment mixtures have 
(nearly) equal critical bed shear stresses, which only become different with extreme grading or 
increasing bimodality of the sediment (Wilcock 1993, Kleinhans and Van Rijn 2002). This might 
imply the absence of mixture effects in incipient motion and bedload, although the suspended 
sediment advection will obviously still vary for the different grain sizes due to different settling 
velocities. 

However, the critical bed shear stress for incipient motion is not the only factor at work; 
when sediment saltates or is in suspension, the difference in grain size and settling velocities 
causes much lower suspended concentrations for the coarse grades than for the fine. 
Consequently, the sea-bed surface may become depleted of fines, that is, armoured. The depth of 
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depletion of fines is related to the thickness of the so-called active layer. Reed et al. (1999) 
analysed analytically and numerically the effect of armouring on sediment transport on the shelf. 
They show that the modelled armouring increases with increasing hydrodynamic forcing and 
decreasing sediment sorting. In addition, the thickness of the active layer is crucial. A case study 
of sediment entrainment across the Eel River shelf (western US) show an order of magnitude 
change in the sediment entrainment rate with and without armouring. Moreover, the direction of 
concentration gradients of silt across the shelf can change sign. Cohesion effects were not 
included in this study, but the strong effects of armouring can be expected in sea beds with fine 
and coarse sand mixtures as well. Reed et al. conclude that bed armouring must be represented in 
models, regardless of the spatial or temporal modelling scales, and detailed vertical tracking of 
the grain size profiles is necessary as well (history effects and graded storm beds). These effects 
of grading in the bed and armouring of the bed surface are well known from extensive studies in 
rivers (e.g. Ribberink 1987, Kleinhans 2002). In the presence of ripples or dunes in the river, the 
bedform height and variation in height indeed determines the active layer thickness, while the 
vertical sediment sorting within the bedform (and in waning discharge or ‘storm’ sequences) 
create vertical grading in the bed. 

Lee et al. (2002) applied the Wiberg et al. (1994) surface armouring model in their 
suspended sediment concentration computations at Duck. Interestingly, the computations are 
extremely sensitive to assumptions of using a single grain size, many grain size fractions and 
surface armouring (see figure 5). Their measurements were best reproduced when armouring was 
modelled as well. Unfortunately they did not study the effect of various sediment sorting, hiding-
exposure and armouring models. 
 

 
Figure 5. Observed and modelled concentration profiles with various models with graded 
sediment and armouring, one with a single grain size, and one without armouring (Lee et al. 
2002, figure 13). 
 
 

An extreme sorting pattern is found in New Zealand and Australia, where a band of 
coarse sediment is generated at a water depth of 30-40 m. Due to shoaling waves of 2-4 m height 
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and 9-12 s period, the ripple height is the largest in that water depth (Black and Oldman 1999). 
The increased roughness leads to increased winnowing of finer sediment. A positive feedback is 
that ripples become even larger for coarser sands, which was also found at the New Jersey site. 

The transport of sand and silt in a deep tidal channel, on the other hand, were found to be 
decoupled completely. The suspended sand concentrations were found to be dependent solely on 
local flow and sediment characteristics, whereas the silt concentrations were related to silt 
concentration gradients in the whole estuary (Green et al. 2000). The decoupling may partly be 
explained by the bimodality of the mixture, which leads to different (dimensional) critical shear 
stresses, and partly by the segregation in suspension due to settling velocity differences. 

In tidal-current dominated conditions over the 40 m high sand banks and ridges off 
Belgium (Vincent et al. 1998, Van Lancker et al. 2000) graded sediment is segregated due to 
size-selective advection of suspended sediment. However, storm waves still had a significant role 
in suspending the sediment and consequently the more wave-sheltered sides of the banks had 
finer sediment. 

Off the Danish coast the grain size segregation seemed to be dominated by vertical sorting 
in bedforms (Anthony and Leth 2002). Along dunelike sandwaves, going from trough to crest the 
grain size decreased from 0.6 to 0.2 mm. Such a fining upward sorting strongly suggests dune 
migration by avalanching in bedload-dominated conditions (Kleinhans 2002). A less pronounced 
vertical sorting was observed on the tidal banks off Belgium by Van Lancker et al. (2000), where 
additional, horizontal sorting patterns were also obvious. This raises the question whether strong 
sorting in dunes can counteract horizontal sorting patterns. 

Concluding, the grading of seabed sediment has a first order effect on the sediment 
transport directions, mostly because of grain size-selective suspended sediment transport (coarser 
sediment in bedload mode, finer sediment in suspended load which may be in a different 
direction). The bed state determines the rate of armouring to some extent (ripple height). In 
addition, there seems to be a strong effect of grain size on ripple size and sheet flow (discussed 
later), which leads to modification of the flow and consequently sediment transport magnitude. 
 
 

2.6. Sediment exchange between shelf, shoreface and surfzone 
 

These observations raise questions about the nature and importance of sediment exchange 
between shelf, shoreface and surfzone. On the one hand, the surfzone of sandy coasts seems to be 
largely decoupled from the shoreface and shelf on the annual time scale. Sediment transport rates 
on the shelf and shoreface (deeper waters) are orders of magnitudes smaller than in the surfzone. 
Most of the sediment transport in the surfzone is associated with sediment reworking and bar 
migration, while the exchange with the dune front or the shoreface is negligible except in strong 
upwelling or downwelling events (e.g. Duck) and in heavy storms and/or degrading coastal 
stretches (e.g. the Netherlands). Other indications of the annually insigificant exchange are the 
cross-shore grain-size sorting and the morphological (significant) depth of closure. 

On the other hand, the balance between offshore and onshore transport components at the 
seaward surfzone boundary is delicate and may depend on small cross-shore fluxes and gradients 
in longshore transport. The cross-shore and longshore sediment transport in deeper waters may be 
small but is certainly not insignificant, especially not during storms. Sedimentary structures 
indicate depths of activity in the order of bedform heights, and the presence of sand waves and 
large current megaripples also indicate significant transport. From this activity it can be inferred 
that there may be significant gradients in cross-shore and longshore sediment transport for 
different grain sizes. Concluding, the exchange of sediment between surf zone, shoreface and 
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shelf may be important for coastal sediment budgets on longer time scales (decades), but virtually 
nothing is known on the order of magnitude and the direction of the net exchange (for different 
grain sizes).  
 
 

2.7. Long-term sediment transport components 
 

Like in many morphodynamic systems, neither the common nor the most extreme 
conditions cause the largest sediment transport events on a yearly average basis, but rather the 
more intermediate energetic conditions, as was found on the sandy Dutch shoreface. On the other 
hand, in the deep waters of the muddy mid-shelf off California it is the most extreme event 
(highest storm waves) that generates the largest sediment transport component on a yearly basis, 
whereas in the sheltered conditions of the Gulf of Mexico, fair weather transport seems to 
dominate. Thus it depends on specific characteristics of each site which conditions are the most 
important for long-term sediment transport, which demonstrates the need for field measurements 
at the site of interest. 

Four approaches for long-term integration of sediment transport were found: 
1. The first is to employ measured or simulated time series of flow conditions in 

combination with sediment transport measurements or a sediment transport model (e.g. 
Wiberg and Harris 1997, Harris and Coleman 1998). 

2. The second is to combine the yearly wave and flow statistics from time series with 
sediment transport measurements in various conditions (e.g. Ruessink 1998) or with a 
sediment transport model (e.g. Harris and Wiberg 1997, Xu 1999). Joint probability 
distributions for flow and sediment transport can be computed for several components of 
the sediment transport, for instance the gravity and infragravity transport and currents. 

3. The third approach would be long-term mathematical modelling, but even when some 
elements of the model are calibrated with measurements this approach comes with a host 
of uncertainties from the model parts (discussed above) as well as from error propagation 
(e.g. De Vriend 1997). 

4. The last is the determination of net transports from long-term morphological mapping of 
the seabed. Van Rijn (1997) combined this with a mathematical model sensitivity study 
to determine some constraints on the directions of the sediment transport (which are 
difficult to infer from morphological changes) and on the contributions of various 
components. 
Wiberg and Harris (C8, 1997) compared the first two methods for the Californian site in 

deep water and found that the probabilistic approach is more useful than the time-series approach 
over time scales longer than the available record, but tends to underestimate the net transport 
because it does not capture the episodic nature of transport events at that site. The time-series 
approach is more reliable because it preserves cross-correlations between the wave and current 
time series and auto-correlations within each time series, but has the disadvantage that the data 
must have been collected continuously throughout the years, or (parts of) time series must be 
simulated, usually with the additional disadvantage that current and wave velocities must be 
assumed independent.  

Van Rijn (1997) and Wijnberg (1995) indicate the basic problems with method 4: a long-
term dataset must be available, and the resolution and accuracy of positions and depths 
morphological maps are very limited and vary in time. In the surfzone, morphological changes 
may be large, but outside the surfzone and beyond the depth of closure, the changes are negligible 
and cannot be significantly determined. However, an alternative morphological method has 
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successfully been applied in rivers and estuaries: dunetracking. The migration of dunes (or other 
bedforms) is then used for the determination of net bedload sediment transport (see Wilbers in 
prep. for an overview). This method has been tried with ripples on the shelf and in the intertidal 
zone (e.g. Amos et al. 1999, Traykovski et al. 1999, Hoekstra et al. in press) and with the slowly 
migrating megaripples (NITG in prep.) in the North Sea. Problems are that only the net bedload 
component is determined whereas the suspended load remains unknown, and at the onset of 
saltation sediment may pass over ripples but contribute to the megaripple migration. It is 
unknown how the ripple and megaripple migration relate to each other and to the true bedload 
transport (e.g. sampled with well-calibrated bedload samplers). The assumption that bedload 
transport by ripples is equal to that by megaripples is flawed because of overpassing sediment 
and various problems with superposition of bedforms (Kleinhans 2002). An advantage of using 
the slow megaripples over the small wave ripples or current ripples may be that the slow 
megaripples need not be mapped frequently and can easily be mapped over large regions. So the 
megaripple mapping may facilitate the spatial extrapolation of the probabilistic method which is 
usually done at a few points only. However, a practical problem may be the frequent obliteration 
of the bedforms by fishers. 

Concluding, the time-series approach seems to be the most reliable in environments with 
‘episodic’ transport events, for instance in very deep waters and on coasts with hurricanes or 
tropical cyclones, but is problematic when long-term records are unavailable. In environments 
that are not very ‘episodic’ but where the fair or more intermediate energetic conditions are 
responsible for the annually largest sediment transports, the probabilistic approach may be more 
appropriate for long-term integration and does not require the very long records necessary for the 
time-series approach. For an extrapolation of the results at the measurement location to a larger 
area (e.g. to determine transport gradients), a combination with mathematical models and long-
term meteorological data would be appropriate, whereas a modelling study that is unconditioned 
by the transport measurements would be less reliable. The method of dunetracking deserves 
further development as it may provide complementary information on bedload transport and 
larger spatial scales. 
 
 

2.8. Effect of marine benthos on sediment dynamics 
 
 Murray et al. (2002) provide an overview of the implications of microscale interactions 
between marine benthos and the sediment dynamics and consequent morphodynamics. Their 
conclusions indicate that the effects can be considerable and even dominant. Not only the 
vertebrates and smaller animals play significant roles, but also marine meiofauna with sizes of 
0.05-1 mm. These are very abundant from intertidal to deep-sea environments and may have 
larger effects worldwide than other burrowing animals by sheer abundance.  
Below the reviewed effects of benthos on the sediment dynamics and morphodynamics are 
summarised in order of decreasing importance for the upper North Sea shelf off the Netherlands. 
At this specific site the fishing intensity with nets that disturb the seabed is impressive; the bed at 
every point is disturbed at least twice a year and the megaripples are often completely obliterated. 
This obviously increases the dynamics of this environment to the point where certain species no 
longer occur and where significant changes of the seabed structure by organisms are precluded by 
the raking of the bed by fisher nets. The summary in order of decreasing importance as far as 
known, is: 
• sediment mixing: burrowing, digging and deposit feeding of animals mixes the sediment 

and inhibits armouring. This mixing can also produce winnowed deposits as fine 
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sediment is continuously brought to the surface to be eroded, leading to coarse 
depressions in the seabed  

• bed surface armouring: mussel and oyster beds of hundreds of meters may cover the bed 
sediment. Although the shells are not very dense, the mussels fix themselves to other 
mussels, rock and gravel with byssus threads with impressive tensile strengths (~107 
N/m2) 

• biodeposition: filter- and suspension-feeding benthic animals deposit faeces in and on the 
sediment, which reduces the concentration of fines and the suspended concentrations 
dramatically 

• sediment stabilisation: worms and crustaceans may stabilise sediment and may lead to 
mud banks (> 50 m)  

• sediment compaction: the vertical and horizontal movement of invertebrates generates 
considerable pressure within the sediment, which can lead to differential compaction, 
diurnal and seasonal changes in sediment consistency 

 
Of no importance for the North Sea environment (but considerable importance elsewhere) are: 
• sediment disruption: feeding and mating activities of large vertebrates (tile fish, otters, 

whales, turtles) involve disruption, excavation and burrowing of the sediment in the order 
of meters of width and depth  

• slope failure: animals may produce mucus (biologic polymeres) that may inhibit slopes to 
avalanche; bioturbation reduces the magnitude of small discontinuities (e.g. lamination) 
that are potential initial failure surfaces; the morphology of failure structures may be 
determined by the nature of the biological communities 

 
In addition, biogenic bottom features and organics production may lead to significant changes in 
the near-bed wave and current boundary layers: 
• feacal mounts and protruding tubes: patchy erosion around tubes in low tube abundance 

because of vortex generation behind the structures (whereas the structures are stable due 
to cementation), and stabilisation in high tube abundance by hydraulic sheltering of the 
bed by the tubes 

• mucus (extracellular polymeric material): mucus is produced by fauna for their own 
biomechanical functions but may lead to both sediment deflocculation and flocculation, 
polymer drag reduction and suppression of turbulence of 50% at low concentrations, pore 
blockage and reduction of permeability of the sediment, cementation of sediment; all 
have considerable effects on sediment suspension and deposition, ripple mobility and 
mass failures. 

 
As geomorphological processes are dependent on the delicate balance between driving and 
resisting forces in the sediment, the forces added by biological processes may be significant on 
short and long time scales. By biomechanical action, the chemical energy stored in the tissues of 
organisms becomes available to do sedimentological work. Neither the local nor the global 
impacts are mapped (let alone understood), however. 
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2.9. General conclusions on sediment transport on the shoreface 
 

The balance of cross-shore and longshore transport components on the shoreface depends 
on a large number of processes, such as bedform formation and migration, armouring, 
infragravity waves, density-induced currents, wave-current interaction in the near-bed boundary 
layer as well as wind-water interaction in the water surface boundary layer, and potentially 
biological processes. The shear stresses generated by different combinations of hydrodynamic 
forcings are not well understood, which is illustrated by the finding of Houwman and Van Rijn 
(1999) that a constant roughness value represents the roughness better than the existing models in 
all conditions. Indeed, Xu and Wright (1995) ventured to remark that “of the three components of 
bed roughness, the grain roughness is one about which there is the most agreement”. Considering 
the uncertainty in this grain roughness of at least a factor three in uniform sediment, and much 
more in sediment mixtures (e.g. Van Rijn 1993), it must be asserted that a principal problem in 
the sediment transport process is still unsolved. There is some scope for long-term sediment 
transport determination by measurements and the probabilistic integration combined with 
extensive large bedform mapping and mathematical modelling. Furthermore, interdisciplinary 
work is needed to incorporate the biological effects into sediment dynamics studies. 

The fact that the shear stresses generated by different combinations of hydrodynamic 
forcings are not well understood, indicates that a comparison between various environments is 
problematic. On the one hand, shelf environments over the world have different forcings. It 
follows from the review that different physical phenomena become important under different 
forcings, which complicates generic modelling. On the other hand, a comparison between the 
surfzone and the upper shelf in the same environment would also show a different set of 
dominant physical processes, notably significant wave breaking in but not beyond the surfzone. 
Both approaches may be useful to follow, but neither need be conclusive. 
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3. A global framework for nearshore shelf environments? 
 
 Ideally, the knowledge summarised above would be applicable generically to comparable 
coasts. The question is then how to compare various coastal settings, and whether such 
comparable coasts exist at all. A few possibilities for global frameworks are discussed below. 
 
 

3.1. Enigmatic shelves 
 

The origin and genesis of shelves is not well known. Shelves are the margins of 
continents (see figure 6) that were probably created by super mantle plumes and plate tectonics in 
early Earth’s history. Shelves are often divided into active margin and trailing edge shelves for 
collision-facing and spreading sides of the continents, respectively. The original continental 
margins attenuated and spread out because of loss of lateral support, and were reshaped by 
tectonic processes at active margins and by erosional or depositional processes at active and 
passive margins. At passive margins, sediments from the hinterland may accumulate to such 
thicknesses that the basal crust has been depressed (e.g. in the Gulf of Mexico), leading to further 
crustal thinning and subsidence (e.g. North Sea basin). However, the main processes shaping the 
inner shelf surfaces seem to be of a smaller scale, and only the top 0.5-1 m of the sediment is 
relevant for sediment dynamics on a time scale of a few decades. 
 

 
 
Figure 6. Bathymetric and topographic map of the world from satellite altimetry and ship depth 
soundings (Smith and Sandwell 1997). The color scheme is such that shelf regions stand out in 
red colours. The arrows and lettering refer to field sites of datasets discussed in this review. 
 
 
 For an overview of large scale morphological boundary conditions, the classification of 
Inman and Nordstrom (1971) might be useful here to characterise the environments that are 
relevant to the SANDPIT project. They classify coasts in a tectonic sense as collisional coasts, 
trailing-edge coasts and marginal seas. In Europe, 1/3 of the coastline (length) is marginal sea 
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coast (North Sea), 1/2 is trailing-edge coast and 1/6 is collisional.  
For second-order features, Inman and Nordstrom classified coasts on the dominant 

environmental aspects: wave erosion and deposition, river deposition (delta’s), wind deposition, 
glaciated and biogenous (e.g. reefs). In Europe, biogenous and wind deposition are irrelevant, but 
more than 1/3 is dominated by wave erosion and less than 1/3 has been glaciated. The remainer is 
dominated by wave and river deposition. Compared to the rest of the world, there is less wave 
erosion and more wave and river deposition in Europe.  

Finally, a number of morphological classes were identified: mountainous, narrow or wide 
shelf with hilly coast, narrow or wide shelf with plains coast, deltaic, reef and glaciated coasts. A 
comparison between the first-order, tectonic classification with the second-order, environmental 
and with the morphological classifications reveals considerable overlap, for instance 97 % of the 
mountenous coasts are also collision coasts, which are dominated by wave erosion. For trailing-
edge and marginal sea coasts, wind- and river deposition and wide shelfs occur most frequently 
together. The sediments on continental shelves vary with latitude (see figure 7). Sand occurs the 
most frequent of all sediments and occurs at all latitudes, whereas mud and coral is limited 
mostly to latitudes below 20°. Rock and gravel increases strongly to the north. 
 

 
 
Figure 7. Variation of sediment type with latitude on shelves of the world (Davies 1972).  
 
 

Although the shelves over the world share many characteristics at a large arm-waving 
scale, it is clear that the many permutations of combinations of environments and boundary 
conditions and the small number of realisations leads to a certain uniqueness of most shelves. For 
instance, the North Sea shelf may contain mostly sand like the Duck shelf does, but the forcings 
for sediment transport on the North Sea are tidal currents and sea waves, while at Duck swell 
waves and tropical cyclones play a major role instead. Also a comparison between the Eel river 
shelf off California and the Ebro delta shelf in the Mediterranean gives limited insight: although 
the episodic nature of fine sediment suspension due to the relatively large water depth is 
comparable, the Californian environment is much more dominated by currents and long-period 
swell than the Mediterranean Sea. Moreover, the Californian shelf is also exposed to much more 
energetic waves due to limited wave dissipation over the narrow shelf. A comparison between the 
deltaic coasts of Europe is not very useful either, because the largest, the Rhine, Rhone, Ebro and 
Po deltas, are not only formed by the rivers themselves but also by the antecedent coastal 
morphology, the tides, waves, etc.  

Apart from the various combinations of forcings, there is a confusing variety of smaller 
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scale local conditions on many shelves (e.g. outcrops, drowned rivers, (fossil) coral reefs, etc.). 
There may well be combinations of environments and conditions that existed in the past but not 
on the present-day Earth. Moreover, it seems far from straightforward to employ the observed 
processes at one type of coast for a prediction of sand mining effects on another type of coast. At 
a world-wide scale a classification of coasts may give insight, but the environments at the local 
scales of the datasets discussed herein are only linked to a limited extent with the large-scale 
features. It is therefore not attempted to couple the present-day processes important for the 
SANDPIT project to the history and processes at geological time scales.  
 
 

3.2. The Big Picture 
 
 A comparison of the various environments under present-day forcings has been done by 
Davies (1972), Kelletat (1995) and others, who produced maps of tidal ranges, wave attack, water 
temperatures, sediment properties and biological phenomena. As said before, these large-scale 
maps will be difficult to couple to the much more local conditions relevant for the SANDPIT 
project, but they are useful as a comprehensive background for the interpretation of the datasets 
discussed in this review. Based on these maps (figures 8-10), the following general remarks about 
the European coasts can be made: 

i. There are wide shelves off north-western Europe except some parts of Ireland and 
Norway, whereas the southern French, Spanish, Portugese shelfs are narrow. Also the 
shelves in the Mediterranean are narrow, except in the Adriatic sea and south of Sicily. 

ii. The Atlantic coast at southern France, north Spain and Portugal have large macrotidal 
ranges, which decrease to the north to mesotidal. The Mediterranean has a microtidal 
range. 

iii. The west coasts of Ireland, the UK and Norway experience the largest storm waves (> 5 
m for 3% of the time), while the Mediterranean coasts have the lowest. Although the 
southern North Sea-coasts are sheltered, the Netherlands and Denmark may have waves 
as large as those off the UK for North-western storms.  

iv. Most of the environments in Europe have storm waves, only Portugal receives some 
swell from the Atlantic ocean.  

v. Pebble beaches occur along the coasts of the UK and Ireland, and less frequently at some 
locations on the French, Portugese, Italian and Greek coast. Other coasts have mostly 
sandy beaches, and rock in some cases. 

vi. Most of the coasts of Europe are artificial in the sense that there are protective structures 
against natural hazards and in some cases land reclamations, except off Spain, Portugal, 
Ireland and Norway.  
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Figure 8. Spring-tide range along the coastline of the world (Kelletat 1995). 
 
 
 The applicability of the existing datasets on sand transport on shelfs and shorefaces to 
European coasts can now roughly be assessed. It is tempting to extrapolate the datasets of Duck, 
Sandbridge and Nova Scotia to the North Sea, of the Gulf of Mexico to the Mediterranean and 
the west coast of the USA to Spain and Portugal. These comparisons would be based on 
comparable large-scale morphologies of the shelves and comparable sediments.  

Unfortunately, the wave and current climates are very different. This is not to say that the 
knowledge of very locally observed phenomena like wave-current interaction and ripple 
behaviour of sandy seabeds in various environments cannot be extrapolated to other 
environments. However, the knowledge of annual wave and current climate and sediment 
dynamics is limited to the environments in which they were determined because of the large 
number and variety of factors involved. The west coast of the USA experiences frequent tropical 
storms with higher waves and strong wind-driven down- or upwelling, which is not 
representative for the North Sea. The east coast of the USA receives large, long-period swell 
waves from the Pacific (apart from tropical storms), which is certainly not representative for the 
coast of Portugal and Spain. The Australian and New Zealand coasts also receive much more 
high ocean swell than European sites. The Gulf of Mexico has either very low energy or tropical 
hurricanes, which does not characterise the more moderate wave climate of the Mediterranean 
Sea. The Nova Scotia site may be more comparable to the North sea in tidal and wave climate, 
but has more complicated morphology of the shelf and coastline with rock platforms and cliffs 
and muddy bars in deeper water. 
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Figure 9. Average significant wave heights along the world’s coastline (Davies 1972). 
 
  
 Concluding, an extrapolation of the annual wave, current and sediment dynamics from 
sites around the world to (unstudied) European coasts is far from straightforward. In the 
comparison between various environments we must distinguish between three aspects: geologic 
long-term at large length scales, annual/decadal climate at shorter length scales, and short-term 
localised aspects at the positions of measurements. Only knowledge of the first and the third may 
be applicable to other coasts at the same large and small scales respectively, but the second 
(climate) is not due to the various combinations of factors and boundary conditions summarised 
in this and the previous section. For these, local measurements are essential. In short, the global 
picture is of very limited use in the local environments of interest. However, the knowledge of 
short-term and short length scale phenomena from many sites can be integrated in quantitative 
models that have the potential for applicability in other environments. This is also the reason for 
the planned extensive field measurements and combined modelling studies in the SANDPIT 
project. 
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Figure 10. Wave types along the coastline of the world (Davies 1972). 
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4. Models ‘off the shelf’ 
 
 The discussion of models in earth science is usually after the discussion of various 
empirical results. However, in the present case, models are involved already in the stage of data 
processing. In fact, certain shear stress and hydraulic roughness models necessarily must be 
combined with the measured flow parameters to yield separate shear stress components, because 
these cannot directly be derived from the measurements. The shear stresses are necessary for 
further modelling of bed states and sediment transport. The fact that models are so deeply 
intertwined with measurements leads to serious epistemic problems. If sediment transport models 
give results that do not agree with measured sediment transports, then the mismatch might be 
caused by the shear stress model or the bedform model or the sediment transport model or all of 
them, apart from systematic measurement errors. In addition, for a single dataset the transport 
model outcome could be the same for a range of parameter choices and contributions from the 
different model components (called morphological convergence, als equifinality in hydrology and 
underdetermination in philosophy). Consequently there is much latitude of choice as to what 
model components can be evaluated in the light of a single dataset (Quine 1953). So, 
comparisons between various shear stress models and various datasets might indicate present 
shortcomings. It is important to discuss these before the bedform and sediment transport data and 
model studies are discussed, because the latter not only depend on measurements and bedform 
and transport model components but also on the shear stress models (although obviously the 
bedforms and morphological changes feed back to the flow). 
 
 

4.1. Hydraulic roughness and shear stress models 
 

There are a small number of models that predict different components of the hydraulic 
roughness and shear stress such as grain roughness, bedform roughness, apparent roughness from 
wave-current interaction and bedload roughness. These models can be implemented in a 
combined wave-current boundary layer model. One of the objectives is to solve for the grain-
related shear stress that is necessary for the prediction of bedload transport and reference 
concentrations. Another objective is to solve for the average and instantaneous velocity profiles, 
for instance to combine with the suspended sediment concentration profiles for computation of 
the sediment transport.  

The best-known models are Smith and McLean (1977), Grant and Madsen (1979, 1982), 
Nielsen (1981, 1983, 1992), Van Rijn (1993) and Xu and Wright (1995). The bedform roughness 
is computed from bedform dimensions, which are often predicted with Nielsen (1981), Grant and 
Madsen (1982), Van Rijn (1993), Madsen et al. (1993) and Li et al. (1996). 

Based on the extensive Terschelling data, Houwman (2000) and Houwman and Van Rijn 
(1999) validated 18 different combinations of these roughness models with grain roughness, 
wave-current interaction, bedform roughness and in some cases bedload roughness in a wide 
range of fair-weather, storm, neap-tide and spring-tide conditions at a water depth of 8 m 
(seaward boundary of the surfzone). They concluded that the apparent total roughness is best 
represented by a constant value of the roughness length of 0.1 m for all conditions, instead of 
predicting variations by more sophisticated models. 

Xu and Wright (1995) tested four bottom roughness models with data from Duck, and 
specifically tested the roughness associated with bedload transport in transitional and sheet flow 
regimes. The bedload-related roughness was found to be at least an order of magnitude smaller 
than the bedform-related roughness, and the first thus becomes dominant only in sheet flow 



 26

conditions. They found that all four models overestimate the sediment transport roughness under 
sheet flow conditions, whereas the roughness of rippled beds was quite well predicted with the 
Nielsen (1983) model. They related the discrepancies to defects in the ripple dimension and 
roughness predictors as well as in the bedload roughness predictor, assuming that the grain 
roughness is well represented. Based on their data, Xu and Wright proposed a refined roughness 
model that combines Nielsen’s ripple roughness and a modified bedload roughness component.  

Li et al. (1997) determined the roughness of the bedload from a combination of the Grant 
and Madsen model with the observed threshold for suspension and sheet flow at the Nova Scotia 
site. Li and Amos (1998) used Nova Scotia data to show that both the Nielsen (1992) and the Li 
et al. (1997) bedload roughness algorithms gave reasonable predictions under combined current 
and waves. Furthermore, they tested the ripple roughness predictors of Grant and Madsen (1982) 
and Nielsen (1981), which were both found to overpredict the ripple roughness. Thus, Li and 
Amos (1998) proposed a new ripple predictor for combined flows and (the transition between) 
rippled bed and sheet flow. The shear velocity and apparent bottom roughness were well 
predicted with Grant and Madsen (1982), but underpredicted with Nielsen (1992). Li and Amos 
finally proposed an adapted roughness model (somewhat different from the Xu and Wright 
(1995) model). 

Black and Vincent (2001) observed and modelled opposite instantaneous flow directions 
in high resolution in the lowest 2 cm of the water column which were caused by asymmetry of 
shoaling waves just seaward of the surfzone. As a result, two (instead of one) suspension peaks 
were observed during one wave period. This study was unfortunately limited to low-energy swell 
conditions and a single point. Yet, opposite flow directions in the lowest 2 cm were demonstrated 
to have a strong effect on reference concentrations, and supposedly may affect bedload transport 
in the same strong manner. If this structure prevails in many conditions and locations with 
asymmetric waves, then the shear stress models discussed before may be seriously defective. 
However, no other studies on this flow structure on the shoreface were found, partly because 
most studies did not have their 5 mm vertical resolution of velocity and concentrations in the 
lowest near-bed 120 mm. 

Smyth et al. (2002) measured turbulence in detail from which the friction velocities could 
be derived for various bed states and hydrodynamic conditions at a water depth of 4 m in fine 
sand off Nova Scotia. A comparison with friction factor predictors of de Swart (1974) and 
Tolman (1994) revealed that the latter gave much better results, which was contributed to 
Tolman’s use of a more recent ripple roughness predictor by Madsen et al. (1990), which 
incorporates the effect that irregular waves result in a hydrodynamically smoother bed than 
regular waves for the same ripple dimensions, and the use of the newer sheet flow roughness 
relation from Wilson (1989). From a comparison of wave friction factors with the predictors of 
de Swart (1974), Grant and Madsen (1982), Nielsen (1992) and Tolman (1994), the last predicted 
the measurements the best, whereas Grant and Madsen overpredicted, and de Swart and Nielsen 
predicted more or less constant values for all bed states which was inconsistent with the 
measurements.  

Myrhaug et al. (2001) experimentally found that irregular, random waves have higher 
friction factors than regular waves. This seems to contradict the notion that wave ripples, which 
are the most significant contributors to the roughness, are smoother in irregular waves than in 
regular waves. However, the friction predictors of de Swart (1974) and others agreed rather well 
with the data. 

Concluding, the evaluations of shear stress and roughness models in literature are 
somewhat conflicting, and one study suggests that an important (velocity-reversing) mechanism 
in asymmetric waves is missing in these models. For two different sites (Duck and Nova Scotia), 
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two different roughness predictors are found that were based on roughly comparable assumptions 
and calibrated (in the Li et al. case corrected) ripple predictors. At both sites, the bedload 
roughness was found to be less important than the ripple roughness except in sheet flow 
conditions. At a third site (Terschelling), surprisingly, the roughness is best represented by a 
constant value, while the dataset encompasses conditions of both rippled bed and upper plane bed 
which likely have highly different hydraulic roughnesses. This might be explained with the 
greater importance of currents at the Terschelling site, leading to a dominance of the wave-
current interaction over the ripple and bedload roughness. In view of the underdetermination 
problems, it might be worth-while to combine the three datasets and analyse these together in the 
same manner and with various models, and possibly also analyse the combined set with neural 
networks (Kroon pers. comm.). 
 
 

4.2. Deep-water tests of sediment transport models 
 

There exists a large variety of sediment transport models and different combinations 
between model components. Most, however, have only been tested on laboratory and surfzone 
datasets, which is outside the scope of this paper (see Davies et al. 2002 for a review). Below, the 
model evaluations and discrepancies with deep-water datasets are summarised. Deep water is 
here understood to be outside the surfzone up to 60 m depth. 

Vincent et al. (1991) evaluated the Smith and McLean (1977) reference concentration 
function with measurements combined with the Grant and Madsen model for wave-current 
interaction. Rather worrying differences between the model and observations were found, which 
were ascribed to the lack of a spectral representation (using one representative wave height and 
period instead), an unrealistic eddy diffusivity  profile, and the sensitivity of the model to ripple 
height predictors (here Grant and Madsen, and Nielsen).  

Li et al. (1997) tested bedload transport models and thresholds for several sediment 
transport states and modes. They found that the Shields criterion is applicable in combined wave-
current flows if the Nielsen (1986) method is followed to obtain the ripple-enhanced shear 
velocity at the ripple crest. However, the suspension and sheetflow thresholds were more difficult 
to explain with existing thresholds of Bagnold (1956) and Komar and Miller (1975), respectively. 
After constructing a new empirical bedload roughness predictor, however, the shear velocity 
related to the sum of grain and bedload roughness was comparable to the threshold shear 
velocities for suspension and sheet flow. Of the transport predictors, the total-load Engelund-
Hansen and Yalin bedload methods did not perform well, whereas the Einstein-Brown and 
Bagnold methods were found to give reasonable predictions of the bedload and total load, 
respectively. 

In purely tidal conditions in a deep tidal channel, Green et al. (2000) compared the 
performance of Engelund and Fredsøe (1976), Smith and McLean (1977) and van Rijn (1984) 
reference concentration predictors to their data, and found that the first did not represent the 
observations well, but the latter two did although they both overpredicted the concentration with 
a factor 10. This is not encouraging, considering that the reference concentration predictors were 
developed for such currents. One reason may be that the bedrock was exposed at a number of 
positions, leading to sand flushing and subsequent limited supply of sediment in the bed. Indeed, 
Rose and Thorne (2001) tested the same van Rijn predictor and found reasonable agreement 
within a factor 2 for a tidal estuary with sand bed in the UK. They were able to derive a new 
empirical expression for the ratio of sediment diffusivity and eddy viscosity for the van Rijn 
predictor.  
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There seems to be no concensus concerning the effect of suspended sediment 
stratification. It was neglected by Xu and Wright (1995) but was incorporated by Vincent et al. 
(1991) following Glenn and Grant (1983). Vincent et al. used the combined Grant, Madsen and 
Glenn model in combination with a suspension model to compare the near-bed concentrations, 
with the aim to validate the suspension model. It was assumed that the wave-current interaction 
and other roughness components in the model were correct, although the importance of 
predicting the right ripple dimensions was emphasized in the sensitivity analysis. In Xu and 
Wright on the other hand, the other roughness components were under scrutiny. Guillén et al. 
(2002) and Jiménez et al. (2002), following a comparable approach to that of Vincent et al., 
found that the bed roughness according to the Wiberg and Harris (1984) and Grant and Madsen 
(1986) models could only be attained when the stratification correction was included in the 
model. 

Concluding, very few tests of sediment transport predictors exist for deep waters. 
Moreover, the predictors critically depend on the shear stress computation, which is quite 
uncertain due to the largely unknown wave-current interactions and the lack of knowledge on 
bedload and ripple roughness. 
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5. Synthesis of bedforms and other bed states 
 

Bedforms are a primary cause of hydraulic roughness of flows over sediment beds and 
may thoroughly modify flow fields. In waves or currents, wave ripples or dunes, respectively, 
play significant roles in the suspension of bed sediments. The bedform height determines the 
active layer thickness at the bed surface, which is important for transport and morphological 
computations over sediment mixtures. Moreover, the presence of ripples may lead to large phase 
differences between sediment suspension in vortex shedding from the ripples and orbital wave 
motion, which may invert the sediment transport direction. Certain bedform types occur only in a 
limited range of flow conditions and sediment sizes. Inversely, the presence of certain (relict) 
bedform types or their deposits may indicate the flow conditions during their creation. These 
relations with hydraulics, sediment transport and therefore morphological changes justify an 
extensive study of bedform occurrence and behaviour. 
 
 

5.1. Definitions 
 

Despite a number of concerted attempts to find concensus in bedform classification (e.g. 
Ashley 1990, Reineck et al. 1971), there is still a wide range of terminology for bedforms in use. 
In addition, terminology for bars, ridges and banks is often mixed with those for bedforms, while 
there are many indications that the formation mechanisms of these larger-scale features are 
fundamentally different from those of bedforms. Below it is attempted to summarise for which 
forms there is concensus and for which there is not (in order of decreasing length scale). Riverine 
bedforms are also given attention because their formation and stability may demonstrate 
comparable mechanisms in current-dominated conditions offshore. 
 The nomenclature for bedforms, roughly classified here according to concensus, includes 
both descriptive and genetic terms (e.g. upper plane bed versus sheet flow regime) (Allen 1984, 
Ashley 1990): 
 
class name other names appropriate 

scaling 
flat bed upper plane bed or lower plane bed, sheetflow regime grains 
ripples current (dominant) ripples, wave (dominant) ripples, short 

wave(length) ripples (SWR) or long wave(length) ripples 
(LWR), short- or long crested ripples, rolling-grain ripples, 
vortex ripples, orbital-, suborbital or anorbital  ripples, 
megaripples, bedload sheets 

grains, 
orbital amplitude 

dunes megaripples, bedload sheets, sand waves, bars water depth 
bars banks, sand waves, sand sheets, riffles >> water depth, 

channel width 
banks sand waves, bars, ridges >> water depth 
 
Ripples and dunes in unidirectional flows are distinguished by their scales and suggested 
maintenance mechanisms: ripples scale with the laminar sublayer and with grain size, whereas 
dunes are maintained by self-generated turbulent structures and scale with the water depth. As 
megaripples are also maintained by the self-generated turbulent structures, these are often 
classified as dunes. Bedload sheets mostly occur in non-uniform sediment, and scale with grain 
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size but plot in the dune regime in bedform stability diagrams, suggesting they are incipient 
dunes (Kleinhans et al. 2002).  

Various banks, bars and ridges scale with the width of channels and are therefore often 
classified as distinct from bedforms. The nature of sand waves is enigmatic and the terminology 
is confusing. Large dunes in tidal channels and rivers have been called sand waves, as well as 
much larger features in the North Sea and elsewhere. Their dimensions are comparable to bars 
and large dunes, but some studies indicate that they are formed by the same mechanism as ridges 
and banks (Hulscher and van den Brink 2001).  

Orbital ripples form under short waves and are directly related to the near-bed orbital 
amplitude and, to lesser extend, to grain size (increasing with both). Anorbital ripples form under 
very long waves and are independent of orbital amplitudes but increase in length for increasing 
grain size. Suborbital ripples form a transitional class with decreasing length for increasing 
orbital amplitude, and, like all classes, increasing length for increasing grain size. 

It is obvious that some bedform types are ambivalent, as they fall in different classes 
among workers. For instance, megaripples, sand waves and dunes have been observed to grade 
into each other and might be argued to be one species (dunes) instead of three different bedform 
types (e.g. Allen 1984, p. I:335, Belderson et al. 1982, Davis et al. 1993). The confusion arises 
partly because: bedforms are often observed in superposition (discussed later); mathematical 
stability analyses of bedforms tend to aggragate several types (e.g. sand waves and tidal ridges); 
there exist transitional forms between many bedform types (e.g. dunes and sand waves, long 
ripples and megaripples, dunes and bars, bedload sheets and dunes). Ashley (1990) proposed to 
employ only descriptive terms, but even this appears to be problematic. The word ripple is used 
for small triangular bedforms in both current and waves, but current ripples and anorbital ripples 
are generated by inherent instabilities in water shearing over a mobile granular material, while 
wave (orbital and suborbital) ripples are often generated in the near-bed orbital motion caused by 
surface waves. In a later section, bedform stability diagrams are discussed, which classify (or 
map) bedforms in genetic terms of sediment mobility (based on wave orbital velocity or current 
velocity) and grain size. 
 
 

5.2. Additional observations 
 

Bedform occurrence and development depends on two factors: the nature and magnitude 
of the near-bed shear stress (e.g. waves, current or a combination) and on the composition of the 
sediment. To start with observations on the relation between bedforms and shear stress: 
• For the application of the Shields curve, ripple predictors and sheet flow thresholds in 

wave-dominated conditions, the enhanced combined shear stress (of waves plus currents 
and of shear stress at the ripple tops, and of combined bedload and grain shear) has to be 
applied (Li et al. 1997). This may contrast with the fluvial situation where the grain-
related shear stress is predictive of the bed state (Van den Berg and Van Gelder 1993). It 
is, however, not unlikely that the bedload-related shear stress in rivers is usually very low 
due to the absence of thick sheet flow layers, but that it should in fact have been added to 
the grain-related shear stress. A clear difference is that the spatially averaged grain- and 
bedload-related shear stress should be applied in fluvial conditions, while in wave-
dominated conditions the shear stress at the bedform tops should be applied, which is in 
the order of a factor 2 higher. 

• The transition from bedload to (saltating) suspended load transport was found by Amos et 
al. (1999) to be equal to the point where saltating grains start to bypass the ripple lee 
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faces. This suggests that beyond that point the ripple migration is no longer representative 
for bedload transport. 

• Superposition of bedforms in rivers has been attributed to hysteresis in changing 
conditions, suggesting that the primary features are relicts of a previous state (Allen and 
Collinson 1974). However, many instances have also been reported were several scales of 
river dunes are co-existing or ripples exist on dunes (e.g. Harbor 1998, Kleinhans 2002), 
which suggests that the modified shear stress field over primary features promotes the 
secondary features. In wave-dominated conditions, superposition has also been observed 
(e.g. Hanes et al. 2001, Van Lancker and Jacobs 2000). Hanes et al. (2001, D1) found two 
populations of bedforms with small ripples superimposed on large wavelength ripples, 
although it is debatable whether the two populations are statistically significantly 
different (Grasmeijer in prep.). The small wavelength ripples had dimensions in the same 
order as was observed on other sites and predicted by models. The long ripples, on the 
other hand, were almost always present but could not be predicted with models. Flow and 
turbulence simulations indicate that the amount of flow separation of small ripples 
superimposed on long ripples is larger than over either one of the ripple types on its own. 
From these and other considerations, it is speculated that the long wavelength ripples are 
low-relief orbital ripples. Interestingly, the same long wave ripples were also found by 
Boyd et al. (1988) and Li and Amos (1999a).  

• Ripple dimension predictors have been developed for regular and irregular waves. 
Ripples in irregular waves attain smaller heights and larger lengths than in regular waves. 
For these predictors, however, the measure of irregularity of the waves is undefined. It is 
not known how the ripple dimensions change in regular waves to slighty irregular to 
irregular (say, Jonswap spectrum) to extremely irregular (various wave fields mixed, e.g. 
swell and sea waves from the same and different directions). Usually the information on 
wave irregularity is not specified in the datasets, and a convenient parameter seems 
unavailable.  

• Large bedforms like the long ripples take a longer time to be formed. Li and Amos 
(1999a) found that the long ripples were formed only in one of three storms, namely the 
storm with the slow build-up. Alternatively, the presence of  strong currents prevented 
their formation. 

• When bedforms have grown large, their reaction to changing conditions becomes tardy 
because the sediment volume involved in bedform reshaping likewise increased. As a 
result, hysteresis of their dimensions can be observed, which has consequences for the 
hydraulic roughness etc. In rivers, hysteresis during a discharge event may even lead to 
dune stalling and the emergence of superimposed secondary dunes (Allen and Collinson 
1974, Kleinhans 2002). In the nearshore and shelf regions, hysteresis of bedforms has 
been observed by Boyd et al. (1988), Li and Amos (1999a) and Traykovski et al. (1999). 
Consequently, bedform types were observed to be out of phase with the concurrent flow 
conditions, especially in waning storm. Traykovski et al. observed ripples whose reaction 
to decreasing orbital diameter seemed to be one day. 

• History effects are arbitrarily distinguished from hysteresis effects by the time scale: 
whereas hysteresis effects occur during a single storm event, history effects refer to 
(relict) bedforms inherited from a previous event. For instance, Traykovski et al. (1999) 
and Li and Amos (1999b) found rounded relict ripples from a strong storm of one week 
prior to the deployment period. 

• The megaripple is a troublesome class of bedforms. In current-dominated conditions, 
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megaripples would be classified as dunes in most bedform stability diagrams, but usually 
they are much steeper than dunes. In wave conditions, lunate megaripples have been 
observed under asymmetric shallow-water waves (e.g. Van Rijn 1993). In reversing 
currents, current-generated megaripples may resemble sand waves because the reversing 
current displaces the brink point forwards and backwards on its crest, leading to more 
symmetric forms than would be the case in steady currents. However, sand waves 
generally have slopes that are far too low for avalanching to occur at the lee side. This 
suggests that they are genetically akin to a recently identified alluvial bedform type called 
low-angle dune (see Wilbers in prep. for a review on alluvial dunes). The relation 
between the latter and former types is by no means clear yet. 

 
The composition of sediment also plays an important role: 
• Wave ripples become larger with increasing grain size (Nova Scotia, New Jersey), while 

current dunes become smaller with increasing grain size. Seemingly conflicting evidence 
is reported by Van Lanker and Jacobs (2000), where megaripples were larger in areas 
with coarser sediment. However, this was caused by larger current velocities above the 
coarser areas, which caused both the coarsening of the sediment and the increased 
bedform dimensions. 

• In both Belgian and Californian (deep) waters, ripples were absent in areas with more silt 
and clay in the bed. This indicates that the presence silt inhibits ripple formation. In the 
North sea (U1), on the other hand, ripples were found in the presence of as much as 44% 
silt and clay. It could be (but is unknown) that the silt and clay in the latter case was 
pelletised whereas it was not in the former cases. 

• Current ripples are not generated in sediments coarser than about 0.7 mm (Southard and 
Boguchwal 1990).  

• In badly sorted sediments, the bedforms do not necessarily behave conform their median 
or average grain size. For instance, fine-sand ripples may form superimposed on larger 
gravelly features (Kleinhans et al. 2002). Presence of much silt in the bed tends to 
prohibit ripple formation. Wave ripples in sediment mixtures are larger than expected on 
basis of their D50 because the presence of coarser sand in the bed (New Jersey). When 
sandy bedforms migrate over a resistant substrate, e.g. bedrock, clay or gravel armour 
layers, their morphology may be affected by the limited availability of sand, leading to 
forms like sand ribbons and barchans (e.g. Belderson et al. 1982). In the latter cases, the 
bedforms are best predicted from the bedload sediment instead of the bed sediment 
(Kleinhans et al. 2002). However, in the case of wave ripples (increasing dimensions with 
grain size) it is not clear what sediment is representative. 

 
 

5.3. Regimes and bed state stability 
 
 In 1990, Southard and Boguchwal presented bedform stability diagrams for currents 
which summarised the insights of previous diagrams and investigations (by Simons and 
Richardson 1965, Allen 1984, etc.). The classification was based on the parameters flow velocity, 
grain size and water depth. The bedform classes were lower plane bed, ripples, dunes, antidunes 
and upper plane bed (in order of increasing velocity). The transition from ripples to higher-energy 
bed states was abrupt, the others were more gradual. This diagram was criticised in 1993 by Van 
den Berg and Van Gelder, who argued that the flow velocity and water depth were dependent 
parameters because of the hydraulic roughness by bedforms. They proposed to use the grain-
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related shear stress instead of the flow velocity and the water depth. In addition, they found that 
the transition to upper plane bed in the Southard and Boguchwal was mostly related to the 
transition from subcritical to supercritical flow in the (mostly based on laboratory) data, instead 
of the true transition to upper plane bed, and therefore must be interpreted with care. 
 Allen (1984) presents a wave ripple diagram with maximum orbital velocity and grain 
size as principal parameters. There are only three bed states: lower plane bed, wave ripples and 
upper plane bed. Li and Amos (1999a) did not explicitly construct a bedform stability diagram 
for waves, but tested predictors for the onset of sheet flow (upper plane bed) and ripple height, 
which could be drawn in a diagram like that of Allen. 
 Arnott and Southard (1990) presented a bedform stability diagram for combined currents 
and waves, based on the current velocity and the oscillatory velocity (see figure 11). A number of 
2D and 3D ripple classes could be distinguished. However, the diagram is only valid for one 
grain size, and for currents in the same direction as the waves. Furthermore, the disadvantage of 
using the flow velocity instead of an appropriate shear stress remains problematic. Finally, the 
diagram was constructed from flume experimental data and contained no field data. 
 

 
Figure 11. Experimental results of Arnott and Southard (1990). 
 
 

A basic problem with wave bedform diagrams is the determination of the appropriate 
sediment mobility or shear stress parameter (as elaborated in a previous section). In conditions of 
combined waves and currents, this problem will be slightly more inhibitive. Apart from this, the 
lack of many more bedform stability diagrams (as for rivers or currents) indicates that other 
parameters and other bedform generation mechanisms are necessary to understand the variety of 
forms (like sediment sorting was necessary to explain various bedform types in rivers with 
sediment mixtures (Kleinhans et al. 2002)).  

Most of the variation is related to three-dimensionality of the bedforms: 
• intrinsic three-dimensionality: bedforms can be 2D or 3D (or, arbitrarily, transitional). 

There are several reasons for this. Current ripples probably have 3D equilibrium forms 
and are only 2D in incipient stadia. Current dunes are still under discussion; some hold 
that their equilibrium forms are also 3D but difficult to obtain in short flumes and 
unequilibrium field conditions (e.g. Michael Church, pers. comm.), while others hold that 
dune three-dimensionality emerges for increasing flow energy (e.g. Southard and 
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Boguchwal 1990). Wave ripples become more 3D with increasing wave energy (e.g. 
Boyd et al. 1988, Southard et al. 1990, Van Rijn 1993, Traykovski et al. 1999). However, 
there are various 3D forms, described as regular, bifurcated, chaotic, sinuous, serpentine, 
terminated, etc. (see Allen 1984, Boyd et al. 1988, Traykovski et a. 1999). It is not 
entirely clear which forms are stable in certain energy levels, and which forms are 
transitional between others. Boyd et al. found straight, long-crested short wave ripples in 
low energy and similar, long wave ripples in high energy conditions, with more irregular 
forms as transitions. 

• broad directional wave spectrum: when waves come from various directions at the same 
time, ripples tend to be more 3D or chaotic (e.g. Boyd et al. 1988). Also when waves 
change direction, they may become 3D in transition to their new equilibrium (e.g. 
Traykovski et al. 1999). 

• superposition of currents and waves: currents that are oblique to dominant waves may 
cause 3D ripples (e.g. Van Rijn 1993), but may also create current ripples in their own 
right (e.g. Li and Amos 1999b, Osborne and Vincent 1993) superimposed on wave 
ripples. Depending on the relative dominance of currents and waves, bedforms related to 
one may dominate with bedforms related to the other superimposed on them. In strong 
tidal currents megaripples may be formed (e.g. Van Lancker and Jacobs 2000) with wave 
ripples on top during tidal slackening. 

• Orbital, suborbital and anorbital formation of ripples: orbital ripples form under short 
waves and are directly related to the near-bed orbital amplitude and, to lesser extend, to 
grain size (increasing with both). Anorbital ripples form under very long waves and are 
independent of orbital amplitudes but increase in length for increasing grain size. 
Suborbital ripples form a transitional class with decreasing length for increasing orbital 
amplitude, and, like all classes, increasing length for increasing grain size. Thus ripples 
first increase with increasing orbital amplitude, then decrease and become independent. 
This explanation (as used in most ripple dimension and roughness predictors) conflicts 
with the observations of superimposition and especially of long wave ripples (LWR), for 
it is not clear how one orbital amplitude can cause a bimodal ripple pattern. 

 
To summarise, current bedform stability diagrams for waves cluster most ripple types in 

one bedform class, neglecting the variation of forms due to various processes. For unidirectional 
steady flows  the stability of various bed states is rather well described in bedform stability 
diagrams. Most of the processes causing the three-dimensionality of bedforms are related to non-
equilibrium conditions and omniconfusing flow (superposition of currents and waves), indicating 
that the bedform stability diagrams based on a small number of parameters can at least be 
improved. Unfortunately, the construction of such a diagram is hampered by the lack of 
knowledge on the fraction of shear stress that actually moulds the bedforms from the bed. On the 
other hand, a diagram that is successful in separating various bed states (if it can be found at all) 
may indicate which parameters are best for bedform dimension predictors as well. A new 
diagram might nevertheless shed light on the definitions of bedform types, and possibly on the 
coexistence of bedforms like ripples and megaripples (also see next section). 
 
 

5.4. Tell-tale sedimentary structures 
 
 Sedimentary structures near the sea-bed surface may provide complementary process 
information. The structures may be interpreted as relicts of certain bedforms or bed states, which 
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indicates the prevalent conditions during their formation, and certain sequences of deposits may 
indicate a sequence of processes (e.g. Johnson and Baldwin 1996). Unfortunately, often the 
sedimentary record is ambivalent in the sense that certain structures point to a range of conditions 
or even various conditions. In addition, most of the record consists of (time-) hiates, especially in 
eroding conditions. However, when some additional parameters are known, such as water depth, 
tides and wave climate, the interpretations can be constrained with ripple predictors and transport 
threshold predictors (e.g. Wiberg and Harris 1994). 
 Some structures are rather straightforward to interpret, for instance (from Van de Meene 
1994) cross-lamination by wave ripples (indicating wave-dominance), cross-bedding by 
megaripples (Nio et al. 1983), dunes and bars (indicating current-dominance), planar lamination 
by sheet flow upper plane bed conditions and mud drapes by tidal slacks. Van de Meene (1994) 
and Van de Meene et al. (1996) found an upward fining trend in the top 10-50 cm of the North 
Sea bed, with structures indicating a decrease of energy as well from high-angle cross-
stratification or hummocky cross-stratification or planar bedding to wave ripples. The upper part 
of the bed often was bioturbated. 
 One sedimentary structure type that evoked a lot of discussion is the hummocky cross-
stratification (HCS) (e.g. Arnott and Southard 1990, Southard et al. 1990, Van de Meene 1994, 
see figure 12), which also frequently occurs on the North Sea shoreface off the Netherlands. Due 
to its large scale, it is difficult to recognise in cores or box-cores. HCS is considered to be 
characteristic for combined current-wave conditions near the transition to upper plane bed (sheet 
flow). Southard et al. (1990) found in laboratory experiments that HCS was formed during 
sediment fall-out from strong purely oscillatory flows with large periods in waning storm, when 
3D ripples develop from the planar bed. In this case, no dominant dip-direction was found in the 
HCS. However, when currents are present and become more important, one dip-direction of the 
cross-stratification becomes dominant (e.g. Van de Meene 1994). Li and Amos (1999a) remarked 
that long wave ripples often occurred in between short wave ripples and upper plane bed, which 
indicates that the LWR may be involved in depositing the low-angle HCS. The long wave ripples 
resembled hummocky megaripples, suggesting that these are the same, while hummocky 
megaripples (mixed wave- and current origin) are known to produce HCS (e.g. Li and Amos 
1999a). Both Van de Meene (1994) and Li and Amos (1999a) found HCS in medium sands, 
whereas Southard et al. and Arnott and Southard experimented with fine sand. 
 

 
Figure 12. Hummocky cross-stratification. Note the box-core, drawn to scale (Swift et al. 1983). 



 36

Southard et al. (1990) hypothesise that formation of hummocky megaripples (and thus 
HCS) is favoured in high near-bed suspension concentrations. The presence of currents leads to 
more sediment diffusion above the wave boundary layer, and therefore reduces the opportunity 
for HCS formation. Thus, HCS is formed in wave-dominant conditions, possibly with relatively 
weak currents. This was confirmed by Li et al. (1997) and Li and Amos (1999a) who found that 
long wave ripples were not formed when currents are more important. On the other hand, the 
combination of a certain current with waves increases the bed shear stress and therefore sooner 
leads to the transition to upper plane bed than would be the case without a current. It is not clear 
what the implications of the latter point are, what the transitional bedforms to e.g. current 
megaripples are in that case. 
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6. SANDPIT: to boldly deploy where few have deployed before 
 
The would-be exploiter of the ocean will do well to remember the words of the old Newfoundland skipper, “We 
don’t be takin’ nothin’ from the sea. We has to sneak up on what we wants and wiggle it away.” 

K. O. Emery, Scientific American September 1969 
 
 The SANDPIT measurements of undisturbed seabed conditions will take place for a full 
year at a transect orthogonal to the coast at Noordwijk (near Leiden, see fig. 13). The water 
depths of interest are between 9 m (1.5 km off the coastline) and 20 m (20 km off the coastline). 
This ranges from the most seaward boundary of the surfzone to the lower shoreface. Storm waves 
may annually exceed 4 m height and decadally 6 m height (with periods up to 13 s), tidal currents 
are in the order of 0.5-0.7 m/s and wind-driven currents are in the same order of magnitude (see 
also dataset descriptions in the appendix). The grain size of the bed sediment is 0.15-0.20 mm 
(moderately sorted) between 8-12 m depth and 0.25-0.30 mm (well sorted) at greater depths. 
Three types of bedforms have been identified and classified by Delft Cluster (2002): ripples, with 
heights of 0.003-0.06 m and lengths of 0.04-0.6 m, megaripples of 0.06-1.5 m high and 0.6-30 m 
long, and sand waves of 1.5-15 m high and 30-1000 m long. 
 

 
Figure 13. Sandpit study area near the coast of Noordwijk and location of tidal sandbanks and 
sand waves in the North Sea. After Van de Meene (1994). The two artificial jetties and channels 
are the Rotterdam (lower) and IJmuiden (upper) navigation channels. 
 
 
 The number of sediment transport studies at the Dutch shoreface may be large, but most 
are modelling studies; the number of measurements is rather small. There is one recent dataset at 
the exact SANDPIT location (CEFAS data with suspended sand, mud and flow measurements) 
but it has not been processed, analysed and interpreted yet. Apart from this there is a large 
number of ADCP measurements, bathymetry measurements and bed sediment samplings (Delft 
Cluster 2002 Ecomorf project). Delft Cluster also studied the benthic communities, which might 

Sandpit 
study area 
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be needed to assess biological effects on sediment dynamics. 
Herein, only a small number of datasets and one combined observation and modelling 

study is used to estimate the order of magnitude of the sediment transport (see table 2). The 
modelling study is by Van Rijn (1997), who combined a model with observations of migrating 
dredging pits and ridges, and a limited dataset of bedload transport in large waterdepth are by 
Van de Meene (1994, also Van de Meene and Van Rijn 2000). The net annual cross-shore 
transport (also including pores) computed by Van Rijn (1997) was 10 ± 10 m2/year at 20 m 
depth, and 0 ± 10 m2/year at 8 m depth. The Van de Meene data is only available parallel to the 
current, which is the shore-parallel net transport for half a tidal cycle. 
 The bed sediment data and bathymetric mappings at the Holland coast and off 
Terschelling (see appendix) strongly suggest that the sediment activity tapers off between highly 
active at the surfzone boundary to episodical suspension by storm waves at large waterdepths. 
This tapering off is at a much slower rate than the seaward decline of morphological activity. 
This is confirmed by the sedimentary structures and bedform observations.  
 
Table 2. Published datasets of sediment transport off Holland. 
Dataset depth, bed flow 

conditions 
suspended load bedload author 

15 aug 1991 
Nile Sampler 
Noordwijk 

14m, 
megaripples 

u=0.2-0.42m/s 
H=0.3-0.8m 

0.5-2 g/s/m = 
~20 m3/m/y 
(momentaneous... 

0.5-2.5g/s/m = 
~20 m3/m/y 
...in tidal cycle) 

Van de Meene 
and Van Rijn 
2000 

model 8 m 
20 m 

yearly 
yearly 

total longshore 
transport: 

85 ± 45 m3/m/y 
35 ± 15 m3/m/y 

Van Rijn 1997 

 
Based on this review and the data and observations on the Dutch shorefaces, the 

following working hypotheses for sediment dynamics at the SANDPIT site are formulated in 
addition to the more general hypotheses given by Wright et al. (1991, see introduction): 
 
1. The North Sea has only small swell waves and is storm-wave dominated. Furthermore 

tide- and wind-driven currents occur throughout the year. Density-driven currents play a 
secondary role off the Dutch coast. Consequently: 

a. wave-current interactions (with wave direction usually orthogonal to current 
direction) will play an important role throughout the year; 

b. wave groupiness occurs frequently on the North Sea (Van de Meene 1994, 
Ruessink 1998) and may affect the sediment suspension; 

c. near the 10 m waterdepth, intermediate and storm waves dominate the sediment 
dynamics, whereas near the 20 m waterdepth, tidal and wind-driven currents 
dominate the sediment dynamics; 

d. at 10 m waterdepth, waves of moderate height will suspend sediment and 
contribute significantly to the annual transport; at 20 m waterdepth, only very 
large waves (say, recurrence once a year) will suspend sediment; 

e. consequently, the bottom orbital velocity climate at 20 m depth will have a more 
episodic nature, and will have dominant northwest and southwest directions, 
whereas at 10 m depth the other directions and smaller storms dominate the 
bottom climate; 

f. the approximate morphological depth of closure at a time scale of 50 years is 
approximately at 10 m depth; the approximate sediment transport depth of closure 
(above which significant exchange take place between the upper shelf and 
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surfzone) at the time scale of 50 years is unknown but probably between 10-20 m 
depth. 

2. The net annual suspended sediment transport will be in the offshore direction, while the 
bedload will be onshore. The net annual longshore sediment transport rate is an order of 
magnitude larger than the cross-shore sediment transport rate. 

3. Density-driven currents from freshwater outflow of the river Rhine is significant for 
cross-shore sediment transport. The tidal excursion is 11-16 km per tidal period which 
means that a freshwater lense may pass the measurement site twice during a tidal cycle. 
As the residual tidal excursion is 2-2.5 km per tidal period in the longshore direction, the 
transport of freshwater to the north is not very fast so the discharge peaks of the river 
Rhine will be attenuated by mixing along the coast. 

4. At locations between 10 and 20 m depth, various wave- and current-generated bed states 
can be expected. The vertical sediment sorting and the active layer thickness of the bed 
are related to these bed states. Furthermore, biological and fishing activities will affect 
the bed state and the vertical sorting:  

a. lower plane bed (sediment almost immobile), various ripple types, and upper 
plane bed (sheet flow), although the latter is not expected more than once a year 
at a waterdepth of 20 m. At the 20 m waterdepth, current-driven bedforms are 
expected to dominate (ripples, megaripples and sandwaves), and during heavier 
storms also mixed flow bedform types; 

b. Effects of sediment mixtures are significant for the suspended sediment fluxes, 
but will probably not vary very much in the long-shore direction and slightly 
more in the cross-shore direction. The bed sediment fines upward in the upper 
0.1-0.2 m, which is the active layer during storms; 

c. active burrowing, digging and deposit feeding by animals will mix the sediment 
and potentially secure mud to the bed in fecal pellets. Moreover, bed surface 
armouring by shells and shell fragments may be important; 

d. the bedforms on the seabed will be obliterated frequently by fishing activities, and 
the sediment will be vertically mixed to a depth of 0.1-0.2 m. 
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7. General conclusions and recommendations 
 
• The determination of the shear stress component that causes bedload transport and 

bedform formation is highly uncertain, especially in superimposed currents and waves. 
The wave-current interaction is not well understood, especially not its effect in the wave 
boundary layer (where bedload transport occurs) and where currents and waves are not 
colinear. So far, field tests of certain shear stress components were done under the bold 
assumption that the other components were correctly modelled, leading to a heavy 
underdetermination of the whole theory by a single dataset. Due to uncertainty in the 
shear stress computations, the prediction of bedload transport and of reference 
concentrations in field conditions is highly uncertain. It might be worthwhile to perform 
the same model tests with a number of datasets with much more variation in parameters 
and the relative importance of currents and waves. 

• The exchange of sediment between surf zone, shoreface and shelf is not well known nor 
understood but may be important for coastal sediment budgets on longer time scales 
(years-decades). Usually, the bedload transport (with preference for coarser grades) 
outside the surfzone is directed towards the coast while the suspended load transport 
(prefering finer grades) is directed towards the sea. At the seaward boundary of the 
surfzone, the balance between cross-shore sediment transport components is delicate and 
the net cross-shore transport is near-zero. Nevertheless, the net cross-shore transport may 
be relevant for sediment exchange between shelf, shoreface and surfzone on a decadal 
time scale. 

• Density stratification due to fresh-water outflow from rivers into the shoreface waters 
may significantly affect the (coastward) cross-shore sediment transport rates, although the 
effect has not been quantified in measurements yet. The effect is to a certain extent 
comparable to downwelling and upwelling patterns. 

• Biological effects by benthic fauna are numerous and diverse and are neither well mapped 
nor well understood. 

• There are few datasets on wave and flow dynamics, sediment transport and bedforms in 
deep water (>10 m) outside the surfzone. Yet, because of the less dynamic and rough 
conditions, and the lack of breaking and heavily dissipating waves, this seems to be the 
place to start measurements for the understanding of shear stress computation, wave-
current interaction, bedform dynamics and sediment transport. 

• Although a number of ripple dimension and roughness predictors have already been 
developed, there is no satisfactory bedform stability diagram yet for waves and waves 
plus currents. In specific, the transitions between wave and current ripples and between 
wave and current megaripples (and long wave ripples) have not been clarified. Also the 
effects of highly irregular or bimodal wave spectra are unknown. Such a diagram, 
however, would probably depend on the same shear stress component as successful 
bedform dimension predictors, while it also would predict other bed states than ripples. It 
would seem logical to develop such a diagram from the existing (field) data as a first step. 
This might clarify many issues in bedform nomenclature, though not of bedform 
hysteresis and history effects. Furthermore a diagram would be helpful in the 
hydrodynamic interpretation of sedimentary structures. 

• The effects of sediment mixtures on ripple dimensions, grain roughness and sediment 
transport in various conditions are not well known. Yet a fining upward storm sequence 
is often observed. Some understanding comes from river settings, but data in deep water 
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and omniconfusing flow is very limited. 
• The use of ‘representative-wave’ parameters is questionable in the presence of coupled 

infragravity waves (wave groups), because the sediment concentration may be larger in 
wave groups. Also in the presence of two different wave fields (e.g. local sea waves and 
swell from a different direction) the suspended concentrations seem to differ from those 
in a ‘standard’ random wave field. 

• To compare datasets from (and apply these to) different environments over the world, 
three aspects must be distinguished: the large-scale tectonic, morphological and 
geological setting and genesis of the shelf, the intermediate-scale of annual/decadal wave 
and current climate and concurrent sediment dynamics, and the local ‘measurement’ scale 
at short time scales (seconds-days). At the intermediate scale, there is an impressive 
variety of conditions, and a large number of possible combinations between the forcings. 
Consequently, the various settings are unique and the knowledge of these settings cannot 
be applied to others. This effectively decouples the largest (integrative, geological) scales 
from the local (generic, process-) scales and transforms the former  into boundary 
conditions instead of forcings. The knowledge of local processes in various 
environments, however, can be integrated in quantitative process-models, with the inputs 
based on the intermediate (climate) scale characteristics and the boundary conditions on 
the geologic and general setting. 

• The best method for the integration of sediment transport over years and decades is by 
use of a combination of a probabilistic method based on measured time series with 
mathematical modelling.  

• The SANDPIT site is located between the wave-dominated surfzone and the (tidal) 
current-dominated shelf, and consequently experiences both storm-wave driven, tidal-
current driven and combined flow-driven sediment transport with concurrent low-to-high 
energy bed states. Datasets in these conditions are rare. In addition, the pulsed fresh-water 
outflow from the Rhine may induce a highly variable density-driven sediment transport 
component. The shallower SANDPIT site may experience significant sediment exchange 
between surfzone and shoreface. The seabed sediment is non-uniform so various graded-
sediment effects can be expected. Application of the dunetracking method for bedload 
transport determination may be useful to extend the point measurements to a larger area, 
although bed disturbance by fishing activities is far from negligible. 

• Wave ripple migration might be used to determine the bedload transport in storm 
conditions with the dunetracking method, whereas in calm conditions a bedload sediment 
sampler may be used. If megaripple (0.2-0.3 m high, 10 m long) migration is determined 
solely by bedload transport, then based on the Van de Meene transport rates a migration 
celerity might be expected of about 40 m/year, which should easily be detectable with the 
planned bathymetry mappings. This method would be applicable to the whole mapped 
area which is useful for extending the point measurements of the frames to a larger 
portion of the shoreface. 
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10. Appendix: datasets 
 

Table 1 (at the back of the report) provides a summary of combined wave, flow, sediment 
suspension, bedform and bedload transport datasets (at the back of the report). The locations are 
given on figure 6. 
 
 

10.1. California 
 

Off California a large number of measurements have been done at water depths of 12 to 
90 m, mostly in the framework of stratigraphic studies of shelf sedimentation. The active margin 
of the American continent is characterised by mountains dipping steeply into the ocean. Very 
nearshore there are sandy patches and beaches, but further offshore the bed is composed of mud, 
organic fluff material and grains of fecal pellets. Strong northern hemisphere swell is generated in 
winter by cyclones in the North Pacific and Gulf of Alaska and can reach wave heights of 8 m. 
Southern hemisphere swell with long periods (>20 s) is generated by storms off New Zealand, 
Micronesia or Central America during summer. Sea waves from local storms are generated in 
both winter and summer, and are generally higher to the north (off Canada) (Davies 1972, 
Kelletat 1995). Shore-parallel winds in the spring drive the strong upwelling common to central 
California. The tide is mixed diurnal and semidiurnal with a tidal range between 1 and 2.5 m. 
 
C1 Storlazzi and Jaffe (2002) measured fluid flow and sediment fluxes at and just outside the 
surfzone in a pocket beach at a water depth of 12 m, offshore of a sand-filled paleo-stream 
channel flanked by bedrock extending beyond the surfzone. The sediment was 0.13 mm and 
contained dense aggradations of dendrasters (sand dollars; bioturbation structures). They 
collected data using an electromagnetic and backscatter sensor and a sonar altimeter and a wave 
buoy in June-July 1998, in moderate storms with deep-water wave heights just above 3 m but 
nearshore waves below 2 m in shore-parallel winds. The wave- and winddriven currents were 
below 3 cm/s. Near-bed sediment suspension events were mostly caused by waves, which is 
common for the whole shelf. The direction of the local wind and current seemed to be forced 
onshore through the incised paleo-stream channel and led to a downwelling net offshore current. 
The suspended sediment flux was onshore for large particles and offshore for small particles. 
This mechanism is probably partly responsible for the formation of the mid-shelf mud belt 
observed on this shelf (and possibly many others). 
C2 Long term bed shear stress characteristics were derived from the local wave climate by 
Xu (1999) for two locations in the Monterey bay, one more exposed to the south and one more 
exposed to the north. The northern site, receiving the intense winter swell, had a 20-40 times 
higher probability for sheet flow conditions (depending on the sediment size) at a water depth of 
13-15 m. 
C3 Xu et al. (2002) studied the suspended sediment transport in much deeper water (32-120 
m), where the bed consists mostly of mud, organic material and has some very fine sand. Three 
instruments were deployed north of the Monterey bay at water depths of 32, 50 and 120 m and 
had transmissometers, sediment traps, current meters and temperature and salinity sensors. The 
instruments were deployed for one year starting in August 1996. They measured consistent 
poleward flows near the bed, although this is in the opposite direction of the equatorial winds. 
The mid-shelf mud belt (described in C1) is derived from the Russion river (south), the Eel river, 
the Columbia river (north) and coastal cliff erosion. The sediment transport at the inner- and mid-
shelf (<50 m) was dominantly northward, especially in the storm-driven flows of winter, but at 
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the outer shelf was equatorward. The hydraulic roughness was strongly dependent on the mud 
coverage (with some bioturbation and small-scale bedforms) of the hardrock shelf bottom. 
C4 Further to the north, on the Eel river shelf, Cacchione et al. (1999) measured suspended 
sediment fluxes and bedform activity at a water depth of 50 m over a 4-month period in 1995-
1996. The equipment consisted of a rotating sector-scanning sonar, a laser particle sizer, acoustic 
backscattering system, and current and transmissivity meters at various depths. The mean 
sediment  diameter was 0.07 mm, but the mode was between 0.125 and 0.25 mm which 
represented 22-46% of the surface sediment. Significant near-bed wave orbital velocities were 
often above 20 cm/s (during storms >50 cm/s), which was the threshold for mobilisation of the 
sandy sediment, which moved mostly as bedload. Net bottom flows were predominantly seaward, 
and northward during heavy storms. Patchy occurrences of low-amplitude bedforms with 
wavelengths of 5-10 m were observed with side-scan sonar in the area, and 10 cm wavelength 
sediment ripples were observed at the surface. Boxcores revealed wavy ripple lamination and 
cross-bedding in the upper 3 cm. Bed-level changes of 5-10 cm were associated with migrating 
bedform fields. Using a model and the measurements, the peak discharge from the Eel river 
(2000-4000 m3/s) was correlated with high suspended sediment concentrations, probably of 
muddy sediment advected from the river.  
C5 Ogston and Sternberg (1999) worked together with Cacchione et al. (1999) at a water 
depth of 60 m, which was the landward edge of the mid-shelf mud deposit. They found a highly 
bioturbated bed, with ephemeral wave ripples in the winter. Again, orbital velocities of high 
waves were highly correlated with the suspended sediment fluxes, accounting for 72% of the net 
along-shelf transport. However, the storm events only accounted for 10% of the net across-shelf 
transport. This net transport is mainly caused by less energetic tidal currents, low-frequency and 
mean currents (not wave-driven) and river discharge. 
C6 To the south, off the Palos Verdes peninsula in southern California, Wiberg et al. (2002) 
measured and modelled sediment tranport over a decadal time scale. Current and light attenuation 
meters were deployed and pump samples collected in December 1992 - March 1993 and the wave 
conditions were less energetic than in C4 and C5. The water depth was 63 m and the surface 
sediment consisted of 34% sand-sized fecal pellets, silt and clay. The orbital velocity magnitude 
was highly correlated with the suspension events. The suspension by waves lead to current-driven 
suspended sediment fluxes in the northward direction, which agreed with the observation that the 
mud belt seemed to be derived from the south, and the mean currents were not related to waves.  
C7 Off the Russian River north of San Francisco, north California, Lynch et al. (1997) 
measured the same characteristics related to the mud belt at 90 m depth derived from this specific 
river. They deployed two acoustic backscatter systems and a current meter in the winter of 1990-
91. Biogenic roughness elements caused suspension of fines above the wave boundary layer, 
which were then advected by the mean currents. 
C8 Harris and Wiberg (1997) attempted to quantify the long-term sediment transport at the 
same site as C7. They considered several methods, including determination from long time series 
and probabilistic approaches. Interestingly, they used an active-layer model for the computation 
of sediment exchange between transport and bed of different size fractions of fecal pellets, silt 
and clay. 
 
Summarising, the western coast of the United States is rocky and only partly covered by 
unconsolidated sediment, which is derived from small rivers. The coarser sand has been 
transported mostly as bedload to the coast and partly stored in beaches, whereas the finer 
fractions and organic material (insofar it has not been produced locally) has been transported in 
suspension to deeper water. In deeper water (20-100 m), the net current transports the fines as a 
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mud belt covering the rocky shelf. High waves of storms or swell are able to cause suspension 
events of the mud at that depth, and exceed the bedload threshold of sand to form ripples in the 
local fine sand patches within the mud belt. 
 
 

10.2. Gulf of Mexico 
 

The inner shelf of Louisiana in the northern Gulf of Mexico has very fine sand near the 
shore and mud in deeper waters. The sites described below are situated east of the youngest lobe 
of the Mississippi delta. The inner shelf is rapidly accumulating fine sediments from the 
Mississippi river and many smaller rivers flowing into the Gulf. Due to its low exposure, the 
hydrodynamic energy is much lower than on open ocean shores. Hurricanes occur mostly in 
September-October. The diurnal tides have an amplitude of 0.4 m and tidal currents are weak (< 
5 cm/s). 
 
G1 Pepper and Stone (2002) measured flow velocities with acoustic Doppler velocimeters 
and computed sediment transports at the seaward and landward side of a shoal at a water depth of 
8.5 and 6.5 m, respectively. They deployed their instruments during the winter of 1998-1999 with 
heavy extratropical storms, weak storms and fair weather. The mean bottom currents during 
storms (>10 cm/s) were more than twice as large as during fair weather, and the computed 
sediment transport was directed offshore. Despite the expected limited wave action on a shelf of 
low exposure, weak storm and fair-weather resuspension and shoreward transport was found to 
be significant. Interestingly, the near-bottom currents during fair weather and weak storms flowed 
in the same direction as the prevailing wind. To satisfy continuity, a horizontal return current is 
expected but this was not measured nor remarked on. During storms, the wind- and wave driven 
currents were relatively more important than wave oscillations compared to fair weather. 
G2 At water depths of 15.5 and 20.5 m, Wright et al. (1997) measured fair-weather bottom 
boundary layer processes and mud suspension with four Marsh McBirney electromagnetic current 
meters, five optical backscatter sensors and a sonar altimeter. The instruments were deployed in 
April 1992 at the 15.5 m site and in May-July 1993 at the 20.5 m site. Additional information at 
the latter site was obtained with side-scan sonar and sub-bottom profile surveys. It was found that 
a weakly consolidated mud layer of 5-10 cm thick covered the muddy fine sand at the 15.5 m site, 
and a thinner layer (1-2 cm) of mud covered a hard-packed layer of very fine sand at the 20.5 m 
site. During the deployment period, more mud accumulated and the roughness was mainly 
biogenic. In low wave energy, the hydraulic roughness was extremely low, but in moderate 
energy became over an order of magnitude higher due to wave-current interaction and suspended 
sediment stratification. The currents in low wave energy were alone not strong enough to suspend 
energy.  
 
Summarising, despite the low hydrodynamic energy, the waves and currents in interaction are 
strong enough to cause shoreward sand transport in fair weather and weak storms, and seaward 
sediment transport during storms.  
 
 

10.3. Ebro delta 
 
 The Ebro delta is situated in the Mediterranean at the north-east coast of Spain, where the 
tidal range is small. The river discharges 300-600 m3/s on average with peaks up to 10000 m3/s 
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of freshwater into the basin. At present, a very low sediment load is delivered to the Ebro delta 
because of river engineering and management works, which leads to a marine reworking of the 
delta (Jiménez et al. 1997). There is a river-derived mid-shelf mud belt at depths between 20-80 
m, in between the sandy inner shelf and the relict transgressive sand deposits on the outer shelf. 
Between July and September there is strong thermal stratification whereas the water is fully 
homogenised between January and March. There is a net current towards the southwest, but 
winds may modify the currents. The winds are strongest in fall and winter and are in the 
northwestern (Mistral) or northeastern (Gregal) directions. The spring tidal range is only 0.25 m, 
so the coast is wave-dominated with two-thirds of the time sea waves and one-third swell, while 
long-period swell is absent. Mean water-level variations due to meteorological tides play a 
limited role as well because these increase the amount of incoming energy and because these 
extend the domain for wave action (Jiménez et al. 1997).  
 
E1 In the period of November 1996 – November 1997 a series of measurements was done for 
a total duration of 3 months and at water depths of 8.5, 12.5, 60 and 100 m (Jiménez et al. 1999, 
2002, Puig et al. 2001, Guillén et al. 2002, Palanques et al. 2002). The mentioned papers are all 
about (parts of) the same dataset and there is some overlap between the papers, so they are here 
discussed as one dataset. The tripods were equiped with up to three electromagnetic current 
meters and optical backscatter sensors, and a wave buoy was deployed for the period. A Region 
Of Fresh water Influence (ROFI) of the Ebro river occurred only to some extent with landward 
directed winds in winter, when the river discharge was high (Jiménez et al. 1999), but the effects 
on bed shear stress or sediment transport have not been quantified. The suspension of bed 
sediment was mostly associated with storm wave activity: the tidal currents were hardly strong 
enough to suspend the mud and not strong enough to suspend  the sand. The longshore current 
was mostly wind-driven and occurred in eastern winds, when the waves were also large. 
Boundary layer modification by wave friction and sediment stratification accounted for a 
significant part of the longshore current drag; thus wave-current interaction was important.  
Once mud was suspended it could remain suspended by current action only. The cross-shore 
gradients in wave-induced shear stresses is governed by the depth decrease with increasing wave 
action, and the shoreward increase of grain size from 60 m up. Longshore transport rates were an 
order of magnitude larger than cross-shore transports, partly due to wind-driven currents. The net 
cross-shore flux was offshore at 12.5 m depth but onshore at 8.5 m depth due to differences in the 
direction of the tidal and wind-driven current. Mud was advected seaward from the inner site and 
caused time lag effects in observed concentrations. Thus the cross-shore gradients in sediment 
size and wave action were important, but also the longshore current. 
The sand of the inner shelf and foreshore was frequently suspended (30% of the time) whereas 
the mud at the mid shelf and the sand at the outer shelf were almost never suspended. The current 
shear stress at the outer shelf was larger than at the mid shelf, preventing the extension of the 
midshelf mud belt. The general conditions differ from those at the Californian and other shelves, 
where stronger tidal currents and longer-period (swell) waves are present and the resuspension by 
waves reach the outer shelf and the cross- and longshore sediment fluxes on the shelf have the 
same order of magnitude.  
 
 

10.4. Duck 
 

The Duck and Sandbridge sites of the US Army Corps of Engineers Field Research 
Facility are located off North Carolina in the Middle Atlantic Bight at the east-coast of the USA. 
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Many field studies have been done here in the past twenty years in the surfzone and at greater 
depths. The bed is stirred primarily by swell waves and sea waves generated in northeasterly 
storms and tropical cyclones. The sediment is fine to very fine sand with an increasing silt and 
clay content (up to 20%) outside the surfzone. The tides are semi-diurnal with a mean spring-tide 
range of 1.2 m. 
 
D1 Hanes et al. (2001) studied wave-formed ripples at water depths inside and just outside 
the surfzone. A Multiple Transducer Array, a rotating scanning sonar and an underwater video 
camera were used for mapping the dimensions of the ripples. In addition, an acoustic backscatter 
system and an optical backscatter sensor for suspended sediment concentrations were deployed, 
and two acoustic Doppler velocimeters and a pressure sensor for waves and currents. Continuous 
measurements were done for a few months in 1995, 1996 and 1997 (latter at both Duck and 
Sandbridge) during fair weather conditions with 0.5-2.7 m high swell waves. They found that 
both short and long ripples (superimposed) migrated landwards in and just outside the surfzone 
with celerities of 0.5-1 cm min-1. 
D2 Wright et al. (1991) measured suspended sediment concentration profiles (five-element 
miniature optical backscatter sensor) and velocities (Marsh-McBirney current sensors) to 
determine the cross-shore fluxes. In addition the bed level was monitored from the tripods (using 
sonar altimeters) and suspended sediment was trapped at several heights above the bed. The 
measurements were done in fair weather in 1985 and 1987 at depths of 8 and 17 m respectively, 
in moderate energy at Sandbridge and in swell-dominated conditions at Duck in 1988 (depth 7.3 
m), and in storm in 1985 (depth 8 m). Except in storm conditions, the net sand flux was directed 
shoreward. They found that a fairly common northeasterly storm is capable of transporting more 
sand offshore in an hour than fair weather in two or more days. The mean flow was found to 
determine the direction of sediment flux, with incident waves causing the sediment suspension, 
while low frequency waves caused measurable but not dominant cross-shore sediment fluxes. 
D3 Li et al. (1996) measured flow, suspended sediment concentration profiles and some 
ripple dimensions in conditions with both waves and currents in 1985 and 1988 at depths of 8 
and 7.3 m respectively. The data is a subset of D2. Conditions with ripples and washed-out bed 
(sheet flow) were taken into account. Over rippled beds, the sediment concentrations were found 
to increase with increasing shear stress, while the reverse was found for sheet flow. Armouring of 
the sediment, which decreased the reference concentrations, was suspected in some cases. 
D4 Xu and Wright (1995) tested bed roughness models using Duck data from 1991 and 1992 
at depths of 13 and 14 m respectively, at which the bed consisted of 80% fine to very fine sand 
and 20% silt. The instrumentation was the same as in D2. Bedform photographs were taken 
during deployment and recovery of the tripods, and the bed was found to be covered with ripples 
in fair weather and moderate sea conditions. Current shear velocities and apparent roughnesses 
were determined from burst-averaged current profiles, assuming the law of the wall. From the 
measurements and models, they found that the sediment transport roughness was an order of 
magnitude smaller than the ripple roughness, and became dominant only in sheet flow conditions 
(upper plane bed). 
D5 Lee et al. (2002) deployed one tripod with six electromagnetic current meters and three 
profiling ABS at a water depth of 13 m and measured in storm and swell conditions. They found 
that the sediment concentrations during storm were higher within the wave boundary layer than 
in swell, but lower above the boundary layer than in swell. They argued that in swell conditions 
the vortex shedding over low ripples extended the eddy viscosity associated with waves to above 
the boundary layer, whereas during storm the strong currents prevented the penetration of 
vortices above the wave boundary layer. This remains speculative to some extent because the 
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modelled wave boundary layer thickness could not be constrained enough in the low vertical 
resolution of the current meters. Yet, no model on wave-current interaction considered the 
enhanced vertical exchange by shedding vortices above the wave boundary layer and the slow 
decay of concentration with height above the bed in weak currents, while this may prevail in 
various swell conditions. Another factor of large importance for the prediction of suspended 
sediment concentrations was the consideration of various grain size fractions. The predicted 
concentrations varied widely between application of single grain sizes, grain size fractions and 
the bed surface armouring. Lee et al. only used the model of Wiberg et al. (1994) for modelling 
armouring. 
D6 Kim et al. (1997) deployed tetrapods (with comparable instrumentation as in D2) at 12 m 
and 20 m depth simultaneously to study bed shear stresses and suspended sediment 
concentrations in fair weather and storm conditions in October 1994. The measurements 
indicated that northeaster anticyclonic winds at the large synoptic length scale, causing 
downwelling near-bottom flows, caused an order of magnitude lower bed shear stresses and 
sediment suspension than the subsequent local-scale winds from a compact cyclone that was 
superimposed on the synoptic-scale winds. From results of shear stress model testing it could be 
inferred that the wave-current interactions in these conditions were rather important. 
D7 The effect of wind climate and fresh-water input on the cross-shelf circulation was 
studied by Cudaback and Largier (2001) with three moored tripods with current meters and 
temperature and salinity sensors and with shipboard ADCP and CTD along seven transects. 
There are both seasonal and synoptical patterns. Winter storms drive downwelling circulation. 
The winter rains increase the fresh-water runoff and the winter wind pattern allows release of 
low-salinity water from Chesapeake bay. The autumn storms break down the thermal 
stratification, leading to a decrease of upwelling effects on temporal variability out of the 
upwelling season. Two patterns at the synoptic scale emerged from the data. Winds in the area 
reverse every few days, driving the cross-shore upwelling and downwelling circulation and the 
temperature variability alternately. The buoyancy current is primarily responsible for the along-
shore circulation and the salinity patterns. The cross-shore currents developed within a few hours 
of the sudden onset of along-shore winds, and the along-shore currents developed after 10 hours 
(half an inertial period). Upwelling caused the buoyant (low-saline) plume to move offshore.  
 
(Summary of Duck taken together with New Jersey, see below.) 
 
 

10.5. New Jersey 
 
J1 At a site northward of Duck and Sandbridge, Traykovski et al. (1999) studied wave 
orbital ripples in medium to coarse sand of a sand ridge on top of a holocene lagoonal mud 
between the ridges. The water depth at the deployment site was 11 m, and several tropical 
hurricanes passed the site during the measurement period. Benthic acoustic stress sensor current 
meters and electromagnetic current meters were used to measure profiles of water velocities, and 
an acoustic backscattering was used to measure concentration profiles. Visibility was very low 
(less than a meter) and biofouling became a problem in the two weeks deployment in August-
September 1995. The bedforms were mapped with a sector scanning sonar. Current ripples in the 
longshore directions were found to be superimposed on orbital wave ripples, both on the crests 
and in the troughs, which were in the cross-shore direction. It was found that wave ripple 
migration was predominantly onshore, while suspended sediment fluxes were too small to force 
the ripple migration, and were in the opposite direction to ripple migration. The ripple migration 
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was used for determining bedload transport, which was an order of magnitude larger than the 
suspended load transport. The differences between orbital and anorbital ripples, and between 
two-dimensional and three-dimensional ripples were studied. For most of the year, the 
waveheight and period were such that the near-bed conditions at this depth were around incipient 
motion of the sand and below the transition from orbital to anorbital (suborbital) ripples. 
Hysteresis was observed in the temporal evolution of the wave ripples that were relict from a pre-
deployment storm. Due to the non-uniformity of the sediment, the ripple dimensions could not 
well be scaled using the median grain size. As ripple dimensions are related to grain size, the 
ripples could grow larger than was predicted with several models because of the presence of 
larger grains.  
 
Summarising, in the middle (Duck and Sandbridge) and northern (New Jersey) Atlantic Bight the 
bedload (inferred from wave ripple migration) and suspended transport outside the surf zone is 
shoreward except in storms, when sheet flow prevails, and when the downwelling is strong in 
northeaster storms, in which case the shoreward currents are counteracted and wave-current 
interaction is important. To the north (off New Jersey) the sand is coarser and consequently the 
bedload transport is more important than to the south, and more frequently near incipient motion. 
Wave-current interactions are important in almost all conditions: during storm, in swell and with 
prevailing downwelling and upwelling. 
 
 

10.6. Nova Scotia 
 

The Atlantic coast of Nova Scotia (Canada) has been studied at depths of 2.4 to 39 m 
water depth. The sediment ranges from 0.11-0.17 mm in shallow water to 0.23-0.34 mm in deep 
water. The semidiurnal tidal range is between 1 and 1.9 m with peak tidal flows of less than 0.35 
m/s at deep water, roughly parallel to the coast. The wave climate is characterised by frequent 
winter storms, mostly from the southwest, and strong seasonality, with wave heights up to 8 m 
and peak periods of 2-18 s. The well-sorted sand on the shelf has been moulded into a series of 
shoreface-connected ridges. 
 
S1 The effect on ripple migration of storm waves combined with swell was recently studied 
by  Crawford and Hay (2001). In 1995 they measured during single-storm event of one day in 
autumn at the seaward boundary of the surf zone, where at best 23% of the waves were breaking. 
The location was Queensland Beach, a pocket beach at which Vincent et al. (1991) also 
measured. The water depth was between 2.4 and 4.1 m and the sediment ranged from 0.12 to 
0.32 mm (D16-D84). Flow measurements were done with a dual-beam coherent Doppler profiler, 
and bedform information was collected with an acoustic rotary sidescan fanbeam, a rotary pencil-
beam acoustic profiler and a laser-video bed profile imaging system with millimeter resolution. 
The ripple migration was found to be offshore during storm growth, and onshore during storm 
decay, which was strongly correlated with nearbed wave orbital velocity skewness (net flow 
direction). During the growth, incident swell waves interacted with the sea waves, leading to a 
bimodal velocity spectrum with negative (offshore) velocity skewness. Crawford and Hay assume 
this pattern during storm growth and decay to be representative for yearly conditions at this site. 
S2 On the same site, Vincent et al. (1991) in their benchmark paper reported suspended 
sediment concentrations and reported the strong effect of bed roughness by ripples on the 
concentrations. In October 1987 they deployed a tripod at a water depth of 4-6 m with an acoustic 
concentration meter and two electromagnetic current meters. The reliability of the measured 
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concentration is not well known as a layer of fine organic material was observed to float close to 
the sea bed. In addition to the measurements, models of ripple dimensions and wave, current and 
apparent roughness were used. The modelled sediment transport due to the net current was found 
to be twice as small as those when the wave-current interaction was ignored and a simple 
logarithmic current profile was assumed. 
S3 Boyd et al. (1988) used time-lapse film and a hydrodynamic tripod at a water depth of 10 
m to study bedform dynamics in low to moderate wave heights (<1.7 m) during summer 
conditions with three small storms. Flow and orbital velocities, pressure and light attenuation 
were measured from the frame. The mean near-bed flows usually were much less than 0.1 m/s 
and wave asymmetry was low. The observed ripple geometry and crest orientation responded 
quickly to changes in the wave direction. The ripple migration (certainly without aliasing) was 
predominantly onshore but offshore during the highest waves of two of the three storms. This 
offshore migration was loosely attributed to wind-driven or tidal motions but not analysed 
further. It is not known whether the ripples might have migrated against the flow by suspension 
fall-out at the upstream side of the ripples. 
S4 At a much larger water depth of 39 m, Li et al. (1997) measured waves, currents and 
ripple migration rates during the winter of 1992/1993. The grain size at the measurement site was 
0.34 mm. The tripod was equipped with two acoustic current meters, a pressure transducer, two 
uncalibrated light attenuation sensors for qualitative suspended concentration measurements and 
a super-8 movie camera with a flash. A shadow bar was employed to derive ripple dimensions. 
The clarity of the photographs in combination with the observed ripple migration was used to 
classify dominant transport conditions into immobile, bedload, saltation/suspension and upper 
plane bed sheet flow. Ripples were almost always present; only in heavy storm conditions sheet 
flow was observed. The ripple dimensions and celerity were used for the determination of 
bedload transport which compared favourably with several bedload transport predictors 
combined with a shear stress/ roughness model. The wave-current interaction lead to a skin 
friction increase of 20% for roughly parallel waves and currents. 
S5 Li and Amos (1998) report the measurements of three storms with wave heights larger 
than 2 m and wave periods up to 14 seconds during the next winter (1993/94) done at the same 
site with the same instrumentation. Measured shear velocities for waves, currents and combined 
flow were used to construct a new empirical total bed roughness model, incorporating a new 
empirical ripple predictor and the roughness due to bedload transport. 
S6 Working on the same data as S5, Li and Amos (1999a) further studied the transition from 
wave ripples to sheet flow conditions. They found three-dimensional large ripples with regular 
small ripples superimposed on them. The large ripples were interpreted as hummocky 
megaripples that were formed under storm waves combined with some tidal, wind- and wave 
driven currents, although strong currents prohibited their formation. The hummocky megaripples 
are supposed to be transitional features from ripples to upper plane bed. They only occurred in 
storm growth when the growth was rather slow, but occurred in all three waning storm 
conditions. Sheet flow (upper plane bed) occurred only during the highest wave heights. 
Interestingly, the sheetflow conditions in these wave-current combined flows occurred already for 
Shields parameters that were only half those predicted with empirical (lab-based) sheetflow onset 
predictors for waves. 
S7 From a slightly finer sediment at a water depth of 56 m on a site somewhat to the east of 
S5 and S6, Li and Amos (1999b) analysed flow, suspended sediment concentrations at various 
depths and ripple data from storms in the period Februari-March 1993. A certain sequence of 
bedforms was observed: 1) relict wave ripples with worm tubes, 2) irregular sinuous current or 
current-wave ripples (low angle between waves and current), 3) wave dominant ripples with 
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significant suspension, 4) sheet flow at the peak of the storm, 5) lunate megaripples and 6) 
transitory ripples in quasi-sheet flow conditions. 
S8 Based on an old dataset from 1982 with a current meter and a time-lapse camera at 22 m 
water depth, Amos (1999) determined bed states and sediment transport thresholds in combined 
currents and waves of various magnitudes, as well as bedload transport from ripple migration. 
The bedload transport was in the shoreward direction both in storms and calm weather. 
Expressions for the onset of sediment motion and the onset of saltation in orthogonal flow and 
waves were derived from the data. The latter was close to the breakoff Shields parameter of 
Grant and Madsen (1982) between low (bedload dominated) and high (suspended load) transport 
regimes. 
 
Summarising, interactions of swell and seawaves prevail in storm growth and cause a seaward 
bedload transport (inferred from ripple migration) just outside the surfzone, whereas seawaves 
alone are more prevalent in storm decay, leading to shoreward bedload transport. This 
mechanism has not yet been investigated at other swell-dominated coasts. In much larger water 
depths (~40-60 m) only the heaviest storm waves and (interacting) currents are able to form sheet 
flow, although the existing predictors for the threshold of sheet flow in waves were not yet 
exceeded, which indicates the importance of wave-current interactions.  
 
 

10.7. Oceania 
 

The measurements on the nearshore and shelf regions in Oceania are summarised together 
as they share some important features. The first site (actually two locations) is off southeast 
Australia (O1, Black et al. 1995, O4, Black and Oldman 1999), the second on the east coast of 
the North Island of New Zealand (O2, Black and Vincent 2001), and the third is at the northern 
coast of the North Island (O3, Green and Black 1999, O4, Black and Oldman 1999). The first and 
third site have more or less similar wave climate and weather patterns of  large exposure and 
strong swell. 
O1 Black et al. (1995) measured suspended sediment transport just outside the surfzone at a 
water depth of 1.11 m with incoming low-energy swell waves and with sediment of 0.33 mm. 
Two acoustic current meters and three optical backscatter sensors and a video monitoring 
suspended sediment clouds were deployed in Februari 1992. Mean offshore and longshore 
currents were in the order of 6 cm/s. Sustained periods of high sediment concentrations were 
associated with clouds of sediment arriving from the shoreward direction, rather than being 
entrained locally which happened in much shorter periods. Because the sediment clouds moved 
seaward at a location just seaward of the surfzone, they were hypothesised to be advected 
seaward from the breaking waves at the seaward boundary of the surfzone by infragravity 
motions.  
O2 In a slightly larger water depth of 1.75 m, 5-10 m seaward of the breaker zone, Black and 
Vincent (2001) measured the same parameters with a three-frequency acoustic backscatter sensor 
(ABS) and an acoustic Doppler velocimeter (ADV). In addition they used a video system looking 
to the seabed. The sediment was 0.2 mm and the swell waves had a height of 0.42 m and a period 
of 10.3 s during the analysed runs of November 1997. They observed and modelled opposite 
instantaneous flow directions in the lowest 2 cm of the water column caused by wave asymmetry. 
As a result, multiple suspension peaks were observed during a wave period. 
O3 The relation between suspended-sediment reference concentrations and bedforms under 
waves was studied by Green and Black (1999) on the shoreface at water depths of 7 and 12 m off 
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the northern coast of New Zealand with sediment of 0.23 mm mean diameter. An array of Marsh-
McBirney electromagnetic current meters, a three-frequency acoustic backscatter sensor and a 
video system for bedform observations were deployed in Februari-March 1996. Various bedform 
types from ripples and hummocky bed to transitional to sheet flow were observed. Contrary to 
the hummocky bed and sheet flow bed states, the presence of ripples lead to strongly increased 
near-bed suspended concentrations. 
O4 A band with significantly increased grain size and ripple dimensions was observed 
centred on 35 m depth on the shelf off southeastern Australia and northeastern New Zealand 
(Black and Oldman 1999). From the shore to the band the grain size increases from 0.3 to 0.9 
mm and seaward of the band decreases again. Black and Oldman offer a mechanism for the 
initiation and sustainment of the band. From a combined wave shoaling, ripple dimension and 
bed roughness model, they predict that the maximum ripple height occurs at a water depth of 20-
45 m on the shelf. This leads to increased roughness and corresponding sediment suspension, 
which leads to winnowing of fines. Once the winnowing begins, the positive relation between 
grain size and ripple dimensions enhances the sediment mobility and sorting effects, creating and 
sustaining the pattern over a long-term. A negative feedback is the decreased mobility of coarser 
sediment. 
 
Summarising, just seaward of the surfzone suspended sediment transport is seaward. For lack of 
ripple observations and the complex near-bed flow pattern leading to the double suspension peak, 
it is difficult to conclude on the direction of bedload transport. On the shoreface (7-12 m) various 
ripple types are present whereas transitions to sheet flow conditions occur only in high-energy 
waves. In much deeper water (35 m), a sand belt is found that is created and maintained by 
interaction of sediment sorting, ripple dimensions depending on grain size, and ripple roughness 
and sediment size affecting the sediment mobility. 
 
 

10.8. North Sea basin 
 
U1 On the British North Sea shelf, off the river Tyne in Central England, Green et al. (1995) 
measured wave heights, currents and suspended sediment fluxes during a severe storm 
(significant wave heights above 6 m) at a water depth of 25 m. The semi-diurnal tide has a 
spring-range amplitude of above 4 m and tidal currents of 0.25-0.40 m/s to the south during flood 
and to the north during ebb, although during this storm it was >0.60 m/s during flood tide 
because of the additional wind-driven component. They used transmissometers, an acoustic 
backscatter sensor, Marsh-McBirney current meters and infra-red optical  backscatter sensors at 
various heights above the bed in December 1990 until January 1991. The bed sediment was 
bimodal with modes at 0.1 mm (56% sand) and 0.025 mm (44% mud), and the seabed is typically 
covered with symmetrical wave-generated ripples of 10 cm long. The mean near-bed flow was 
retarded by the sum of the bed roughness and the apparent roughness due to wave-current 
interaction in the wave boundary layer. The observed bed roughness was consistent with large 
scale bedforms, although most bed state predictors already indicated upper plane bed conditions. 
The sediment flux was directed offshore and to the south. Despite the extremely high energy, the 
erosion depth required for the suspended sediment was <1 cm, indicating that larger sedimentary 
structures and stratigraphic contributions must be rare. (For a summary see the Netherlands.) 
 
 
 



 58

10.9. Belgium 
 

The coastal waters off Belgium are dominated by flood flows and the Flemish coastal 
banks. The semidiurnal tidal amplitude is 2.9-5.4 m with current velocities of 0.86 m/s (ebb) to 
1.32 m/s (flood). During storms, wave-induced currents and orbital velocities also become 
important. Most research in this area focussed on the Flemish banks, which are up to 40 m high 
relict features. 
 
B1 Sediment transport and bedform behaviour on the Flemish banks was studied by Van 
Lancker et al. (2000) and Van Lancker and Jacobs (2000) in water depths of 0-15 m. The spring-
tidal flood current alone can transport sediment of 0.42 mm at least, but larger when the sediment 
is stirred by waves as well. The coarsest sediments (up to 0.5 mm) with the best sorting are found 
on the tops of the banks. In general, medium-sand areas with better sorting were believed to have 
been subject to winnowing of finer sediment, which allowed the direction of sediment transport 
to be derived. The major controls on bedform formation were the flood current and the available 
sediment. The largest dunes (up to 3 m height) were found in the shallower areas (water depth 
<9m, depending on the current velocity) with medium sands, while areas with more silt in the 
bed had almost no bedforms. An additional dune height-limiting process is wave-stirring, 
especially in shallower areas. Smaller bedforms (also dunes?) were superimposed on the large 
dunes. The crest-lines of the dunes were all perpendicular to the flood current. Due to the 
orientation and fetch of the area, the persistence of hydro-meteorological conditions is more 
important than its strength. 
B2 The sediment suspension and transport under waves and currents was studied in more 
detail by Vincent et al. (1998). In the winters of 1994 and 1995, they deployed a tripod at the 
northern steep side of the Middelkerke Bank at a water depth of 10 m, and at the less steep 
southern side of the bank in 11 m deep water. The tripod had two electromagnetic current meters 
and optical backscatter sensors, and an acoustic backscatter system. The wave heights were 1-4.3 
m, and were observed to increase the suspension but have no effect on the transport direction. 
The sediment at their site was poorly sorted and location-dependent, and the suspended sediment 
fluxes were calibrated and computed fractionwise. The southern side of the bank appeared to be 
more wave-sheltered, which explains the lower suspended concentrations in part. The suspended 
sediment at the exposed northern side consisted mostly of 0.1-0.14 mm, which did not occur in 
significant portions in the bed material, indicating that it was advected by upstream wave- and 
current action. 
B3 Williams et al. (1999) measured both suspended and bedload transport (from ripple 
tracking) at the northern side of the Middelkerke bank (median grain size in the bed 0.45 mm). 
They deployed a pressure sensor, a two-frequency acoustic backscatter system, electromagnetic 
current meters and an acoustic ripple profiler at a water depth of 20 m during calm weather and a 
storm in Februari 1993. They also conducted side-scan sonar surveys in the area. From the data 
they derived a semi-empirical equation for computing the suspended sediment transport in 
conditions with waves, currents and both. 
B4 Williams and Rose (2001) analysed a subset of the previous dataset of one day in Februari 
1993, and found agreement of the data with some transport predictors. 
 
Summarising, the coastal waters off Belgium are dominated by tidal currents although the limited 
water depth allows strong action of storm waves on the tops of the Flemish Banks as well. The 
bedforms and grain sizes are spatially highly variable due to the large Flemish banks. The 
currents generate various (sometimes superimposed) classes of dunes, whose slow reaction to 
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changing hydrodynamic forcing (hysteresis due to the large volumes of the bedforms) may 
explain the absence of upper plane bed observations during storms. 
 
 

10.10. The Netherlands 
 

The compound coast of the Netherlands has barrier islands in the north (e.g. 
Terschelling), a closed barrier coast in the middle (‘Holland coast’) and estuaries and tidal basins 
in the south (e.g. Westerschelde and Oosterschelde). A large number of studies have been done in 
the past 20 years, which were mostly concentrated on the surfzone in the northern and middle 
zones, on bar and bedform dynamics in the estuaries, on ebb-tidal deltas off the estuaries and 
barrier islands and on ridges, sand waves and banks at deeper water. The semidiurnal tide has an 
amplitude of 1.5-2.1 m (neap-spring), with flood-dominated currents of 0.2-0.5 m/s near the bed. 
The average significant wave height is 1.1 m, and exceeds heights of 5 m during heavy 
northwestern or soutwestern storms, whereas swell waves are relatively small and unimportant 
due to the sheltered condition of the Dutch coast in the North Sea basin. The sediment is sand of 
0.15-0.5 mm with small amounts of silt and clay and shell fragments. Off the Holland coast, a 
significant residual water motion outside the surfzone is driven by wind and density differences 
of water discharged from the Rhine that is drifting to the north. 
 
N1 During campaigns to measure hydrodynamics and sediment transport in the surfzone off 
Terschelling, Ruessink (1998), Houwman (2000) and Ruessink et al. (1998, 1999) also deployed 
instruments at a water depth of 9 m at the seaward boundary of the surfzone. This region is 
dominated by suspended sediment transport by shoaling and breaking waves, and by wind-, 
wave- and tide-driven currents (mostly in the longshore direction). They used electromagnetic 
flow meters, optical backscatter sensors and pressure sensors. 
It was found that the net cross-shore sediment flux is the result of a delicate balance with large 
fluxes in both offshore and onshore directions. Important components of this balance are upslope 
transport by wave asymmetry and the undertow. Consequently, the loss or gain of sediment from 
a coastal or foreshore stretch depends more on gradients in the longshore sediment transport 
within that zone than on the net cross-shore transport (Ruessink 1998, Ruessink et al. 1998). 
The largest contribution to yearly cross-shore sediment transport (50-60%) is by (breaking) 
waves with a local significant height of 3.5-4.5 m, which occur only for 0.9% of the time. In 
these conditions the wave group-induced infragravity transport component is much more 
important than the high-frequency or mean current-induced transport. Fair-weather transports are 
very small and more energetic conditions are very rare (Ruessink 1998, Ruessink et al. 1999). 
The longshore tidal currents at a water depth of 9 m are dominant in the flood (north-east) 
direction, but in strong winds the tide may be outbalanced by the wind-driven currents. The wind-
induced longshore flows are an order of magnitude smaller and seaward directed near the bed for 
landward directed winds (Houwman 2000). 
N2 In addition, the sea bed sediment off Terschelling was sampled in a large region from 0-
15 m water depth and described by Guillén and Hoekstra (1996, 1997), Hoekstra and Houwman 
(1997), and Hoekstra et al. (1999). The cross-shore variation of sea-bed grain-size indicates that 
selective sediment transport processes are active. The maximum grain size (median of 0.26 mm) 
is found at the waterline, rapidly decreasing through the surfzone to 0.14 mm at a water depth of 
8 m, and then slowly increasing until a water depth of 10 m (Hoekstra and Houwman 1997, 
Guillén and Hoekstra 1996, 1997). At the Holland coast, Van de Meene (1994) and Van de 
Meene (1996 et al.) also found a transition of sediment composition at a water depth of 10 m: in 
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shallower water the sediment was fine grey sand, whereas in deeper water is was medium brown 
sand. Guillén and Hoekstra (1996) relate the zones to their hydrodynamic activity and the 
consequent size-selective winnowing and sediment transport. The deepest coarse sand has been 
suggested to be a relict deposit of lower sealevels. The coarsest sediment on the beach, fining 
towards the sea, reflects the action of shoaling and breaking waves. They explained this pattern 
with a yearly mean onshore bedload transport of coarser sand due to wave asymmetry and 
streaming and an offshore suspended load transport of finer sand due to undertow. The minimum 
at a water depth of 8-10 m is the seaward boundary of the surfzone, which agrees with the 
morphologically significant depth of closure (9 m). It was hypothesised (Hoekstra et al. 1999) 
that the fine-sediment zone between 6-9 m reflects the suspended sediment fall-out by undertows 
and possibly rip-currents during storms. This would mean a decoupling between the upper and 
lower shoreface, which contrasts with the Duck site in the Middle Atlantic Bight off the eastern 
US, where upwelling and downwelling events play a role in the exchange of sediment. 
N3 Based on a long-term morphological dataset (JARKUS, 1964-1992) and model 
computations and sensitivity analyses, Van Rijn (1997) analysed the sediment transport and sand 
budget of the coastal zone (Holland coast) in water depths of 8 and 20 m. The cross-shore 
transport was dominated by tide- and wind-induced currents and density-driven currents (from 
Rhine water), with the waves stirring the sediment. At 8 m water depth, the components of wave 
velocity asymmetry, bound long waves, Longuet-Higgins streaming and undertow dominated, 
whereas at the 20 m water depth, the density-driven current dominated the cross-shore sediment 
transport. About 60% of the longshore sediment transport takes place in the inner (200 m) 
surfzone. The wave-induced currents are dominant, but the tidal current also is a major 
component in sediment transport, especially in the north where the tidal asymmetry is larger. 
N4 In relation to the shoreface-connected ridges off the Holland coast, sediment dynamics 
were studied at a water depth of 10-20 m by Van de Meene (1994), Van de Meene et al. (1996) 
and Van de Meene and Van Rijn (2000). Current velocities were measured with a ship-based 
acoustic Doppler current profiler and bedload sediment transport was measured with a basket-
type sampler as used in rivers (the Delft Nile Sampler). An acoustic current meter, optical 
backscatter sensors and a pressure sensor were deployed in 1989-1991 in fair weather and storm. 
The wind- and density-driven currents added significantly to the tidal currents, especially for low 
tidal current velocities. In offshore winds, the wind-induced currents cause upwelling circulation 
in the cross-shore direction, although this upwelling is counteracted in moderate winds by the 
density-driven cross-shore currents. 
In fair weather, the current-driven bedload transport is dominant and low, whereas in storm, the 
waves stir up the sediment and the sediment transport is dominantly in the suspended mode, 
driven by the mean currents. Infragravity wave-driven (wave-groups) transport is small. 
From 250 box-cores and lacquer profiles, echo soundings and side-scan sonar surveys, it could be 
concluded that the sea bed is reworked by both currents and waves to a depth in the bed of 0.1-
0.2 m. The grain size of the bed sediment is 0.15-0.20 mm (moderately sorted) between 8-12 m 
depth and 0.25-0.30 mm (well sorted) at greater depths. Sedimentary structures of megaripples, 
wave ripples, combined wave-current ripples and transitions to upper plane bed were found, with 
wave action generally increasing with decreasing water depth. Megaripples were observed in the 
sounding profiles and sonar images. Bioturbation is rather scarce and shell-fragment lags are 
often found at depths of 0.1-0.2 m below the sea-bed surface, indicating that the sedimentary 
structures have been formed recently and reflect the current dynamics. The sediment on top of the 
sand ridges is coarser and better sorted due to wave action (winnowing of fines). 
N5 Density-stratification and density-driven currents off the Holland coast were studied by 
Van der Giessen et al. (1990) and De Ruijter et al. (1992, 1997) in the so-called Region Of 
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Freshwater Influence (ROFI) of the river Rhine. They used ship-based current meters, a 
temperature and salinity probe in 1985-1986 and in 1990 and 1992. The findings presented here 
agree with those of Van de Meene (1994). The fresh water plume is mostly confined in a band 
within 20 km off the coast. The density-driven currents have a significant onshore-directed 
component of about 3 cm/s, up to 10 cm/s for extreme river discharges. The wind speed and 
direction affected the density-driven currents mostly by stirring, which reduces the salinity 
gradients. The tidal modulation of the river discharge leads to a pulsed discharge of fresh water 
and consequently a train of fresh water lenses. One such pulse may remain recognisable for a 
week in the absence of wind and in neap tide. A literature survey indicated that the Rhine is 
extraordinary in this sense: most rivers do not have halted discharges due to the tide and therefore 
do not form these pulses. 
N6 One of the first attempts to measure bedload by ripple tracking on the shelf is reported by 
Huntley et al. (1991). They deployed a camera with a flash light and shadow bars at a water depth 
of 29 m off the north-western coast of the Netherlands, and measured current velocities with an 
acoustic Doppler current profiler from a ship in fair weather in Februari 1989. The bed sediment 
was well-sorted sand of 0.29 mm with some shell fragments. The deployment site was within a 
region of sand waves of 3 m height and 200 m length. No suspension of sediment was observed, 
and observed bed states were lower plane bed and straight-crested ripples. The dataset is very 
limited due to aliasing problems and the short time of deployment. 
 
Summarising, the northern coast of the Netherlands (barrier islands) is more exposed to waves 
than the western coast (Holland coast), whereas the western coast is affected by the density-
driven currents from riverine fresh water outflow. Both coasts have surfzone and upper shoreface 
sediments that are significantly finer than the middle shoreface sediment, suggesting decoupled 
zones. The former are generated by contemporary suspended offshore transport and onshore 
bedload transport, whereas the latter are probably relicts. Nevertheless there are current-driven 
dunes and ripples as well as wave ripples and sheet flow conditions during storms in the deeper 
waters (~20 m), and a net longshore bedload transport. The latter is the result of the flood-
dominated tidal currents, although these can be counteracted temporarily by strong wave- and 
wind driven currents in storms. The same bed states are found further to the northwest at a water 
depth of 25-30 m, although in dataset U1 the upper plane bed condition has not been observed 
despite the extreme storm energy and the presence of 44% silt in the bed, which tended to inhibit 
ripple formation in Belgian and Californian waters. 
 
 

10.11. Experiments 
 
 Although this review focusses on field data from large water depths outside the surfzone, 
it is fruitful to include some recent laboratory experiments done in large facilities with large 
water depths and unbreaking, irregular waves. See also the literature review by van der Werf (in 
prep.). Below some studies are given that were not included in the SEDMOC database. 
 
Lab 1 Thorne et al. (2002) applied irregular waves to a medium, badly sorted sand in a large 
flume (Delta Flume of Delft Hydraulics) at water depths of 4.5 m. The suspended concentrations 
were measured with ABS and pumps. The Nielsen models for time-averaged reference 
concentrations and concentration profiles were tested on the data to compare the applicability of 
diffusion, convection and the combination. It was found that pure diffusion represented the 
measurements the best in the lowest layer of twice the ripple height, whereas above a combined 
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convection-diffusion approach gave better results. The suggested reason was that the lower layer 
was dominated by near-bed vortices shed from the ripples, while the upper layer exhibited break-
down of the vortices into random turbulence, although a full verification can only be obtained 
with non-time-averaged modelling. 
 
Lab 2 Vincent and Hanes (2002) studied intrawave suspension in regular and irregular waves 
and wave groups. In repeated experiments, the variation in suspended sand concentrations was 
found to be 30%, which indicates that this variation may even be larger in field conditions where 
lag and history effects of bedforms are present. The settling velocity of the sediment appeared to 
be decreased significantly by the near-bed turbulence. It was found that waves are continuously 
‘pumping up’ sediment, which did not settle back to the bed before the next wave arrives because 
of the low settling velocity. So intrawave suspension models should include the sediment 
suspension by antecedent waves to predict the correct suspended concentrations, otherwise the 
concentrations are underestimated. This lag effect in suspension was especially apparent in wave 
groups, where the highest concentrations were measured towards the end of the wave group, 
where the gravity waves rapidly decreased in height.  



Set year campaign water depth 
(m) 

grain size 
(mm) 

wave height 
(range m) 

wave period 
(s)  sea/swell 

tidal range 
(m) 

max tidal 
velocity (m/s) 

authors 

Duck        
D1 95, 96, 

Sandyduck97 
1.4 – 7 0.12 – 0.21 0.2 – 2.7 4 – 16   Hanes et al. 2001 

D2 85, 87, 88, 
Sandbridge88 

7 – 17 0.09, 0.125 0.6 – 4 9 – 14 ~0.8  Wright et al. 1991 

D3 85, 88 6.3 – 9.9 0.13 0.24 – 1.5 6 – 12 ~0.5  Li et al. 1996 
D4 91, 92 13 – 14 very fine s 0.9 – 2.6 sea 7 – 12 <1.2 0.1 – 0.2 Xu and Wright 1995 
D5 96 13 0.12 - both 6-12  0.2 – 0.5 Lee et al. 2002 
D6 94 (1 year) 20 0.1 - 7 – 14  0.2 Kim et al. 1997 
D7 94 8 – 30 0.1 - -   Cudaback and Largier 2001 
Nova Scotia        
S1 95 2.4 – 4.1 0.17 0.6 – 1 4 – 9 <2  Crawford and Hay 2001 
S2 87 4 – 6 0.14 - 4.3 – 6.4   Vincent et al. 1991 
S3 83 10.5 0.11 <1.7 5 – 11  1 – 1.9 Boyd et al. 1988 
S4 93 39 0.34 0.4 – 4 8 – 15 0.5 – 1.5 0.2 – 0.35 Li et al. 1997 
S5 93 39 0.34 0.4 – 4 10 – 13 0.5 – 1.5 0.2 – 0.35 Li and Amos 1998 
S6 93 39 0.34 3 12 – 14 0.5 – 1.5 0.25 – 0.35 Li and Amos 1999a 
S7 93 39 0.34 1 – 7 13 – 16 0.5 – 1.5 0.25 – 0.35 Li and Amos 1999b 
S8 82 22 0.23 <1.5 sea 8 – 10 0.5 – 1.5 0.25 – 0.35 Amos et al. 1999 
New Jersey        
J1 95 11 0.4 <2 5 – 18  0.1 – 0.2 Traykovski et al. 1999 
California        
C1 98 13 0.13 1 – 4 swell 5 – 20 1 – 2.5 0.3 – 1.7 Storlazzi and Jaffe 2002 
C2 90-95 (5 years) 13-15 0.2 – 0.5 0.5 – 2.5 swell 5 – 20   Xu 1999 
C3 96 32, (70, 120) mud / sand 0.5 – 6 swell 5 – 20  0.1 – 0.25 Xu et al. 2002 
C4 95, 96 50 0.07 – 0.18 2 – 8 swell 10 – 20   Cacchione et al. 1999 
C5 95, 96 (1 year) 60 0.02 (fecal) <9.5 swell 5 – 30 0.1 0.35 Ogston and Sternberg 1999 
C6 92, 93 63 mud / sand <4    Wiberg et al. 2002 
C7 91 90 0.04 (fecal) -    Lynch et al. 1997 
C8 91 90 0.04 (fecal) -    Harris and Wiberg 1997 
Northern Gulf of Mexico       
G1 98, 99 6.5, 8.5 0.12 0 – 2    Pepper and Stone 2002 
G2 92, 93 15.5, 20.5 5cm  biomud - 8 0.3 – 0.5 0.05 – 0.15 Wright et al. 1997 



Oceania        
O1 Aus 1992 1.11 0.34 - 12   Black et al. 1995 
O2 NZ 97 1.75 0.19 0.42 10   Black and Vincent 2001 
O3 NZ 96 7, 12 0.23 0.5 – 2 swell  6 – 11 1 – 2 0.1 – 0.15 Green and Black 1999 
O4 Aus 
+NZ 

- (3 years) 10 – 60 0.3 – 0.9 <4 6-12   Black and Oldman 1999 

United Kingdom        
U1 90, 91 25 0.025, 0.10 0.5 – 8 6 – 10 < 4 0.25 – 0.4 Green et al. 1995 
Belgium        
B1 95-99 3 – 15 0.15 – 0.5 -  2.9 – 5.4 0.86 – 1.32 Van Lancker et al. 2000, 

V.Lancker and Jacobs 2000 
B2 94, 95 10 – 11 0.1 – 0.5 3.6 – 4.3 6.6 – 7.6 <5 0.75 – 0.99 Vincent et al. 1998 
B3 93 20 0.45 1.9 – 2.9 6.2 – 10.8 2.7 – 4.5 0.3 – 1.0 Williams et al. 1999 
B4 93 21 0.45 2.5  2.7 – 4.5 <1.0 Williams and Rose 2001 
Ebro Delta        
E1 96 - 97 8.5, 12.5, 60, 

100 
0.008 – 0.15 0.5 – 4.5 2 – 12 <0.25  see text 

The Netherlands        
N1 94, 95 3 – 9 0.16 0.5 – 5 sea 4 – 13 1.2 – 2.8  Ruessink 1998, Houwman 

2000, Ruess. et al. 1998,99 
N2 94, 95 3 – 9 0.14 – 0.25 -    Guillén and Hoekstra 1996,97 
N3 64-92 (yearly) 8, 20 - -    Van Rijn 1997 
N4 90 15 – 25 0.25 – 0.30 -   0.3 – 0.7 Van de Meene 1994,  

Van de Meene et al. 1996,  
VdM and Van Rijn 2000a 

N5 85, 90, 92 5 – 25 0.25 -   0.7 – 1.1 Van der Giessen et al. 1990 
De Ruiter et al. 1992, 97 
Simpson and Souza 1995 

N6 89 29 0.29 -    Huntley et al. 1991 
 
 



 
Set    UC profs*, 

grased 
emphasis of study 
(WC=waves and currents) 

burst-avg. 
data  avail.? 

authors 

Duck       
D1     ripples ripples Hanes et al. 2001 
D2     cross-shore energy contributors - Wright et al. 1991 
D3    UC ripple roughness and resuspension no Li et al. 1996 
D4    U bed roughness no Xu and Wright 1995 
D5    UC grased suspension in swell and sea, diffusion 

vs. advection WC 
no Lee et al. 2002 

D6     weather types and wave conditions no Kim et al. 1997 
D7    U weather types, upwelling and buoyancy no Cudaback and Largier 2001 
Nova Scotia       
S1     ripple types - Crawford and Hay 2001 
S2     roughness and concentrations WC - Vincent et al. 1991 
S3     ripple types and ripple stratification ripples Boyd et al. 1988 
S4     bound layers, sed transp and ripples WC no Li et al. 1997 
S5     ripple and roughness predictors WC ripples Li and Amos 1998 
S6     ripple-sheet flow transitions WC ripples Li and Amos 1999a 
S7    UC ripples/sheetflow in WC ripples Li and Amos 1999b 
S8     ripples and transport thresholds in WC - Amos 1999 
New Jersey       
J1    UC grased ripple types, dimensions, sed transp WC ripples Traykovski et al. 1999 
California       
C1    grased sediment suspension events - Storlazzi and Jaffe 2002 
C2     wave climate and bed shear stress - Xu 1999 
C3     sediment suspension events in storms - Xu et al. 2002 
C4     Eel river mud, susp sed and bedforms - Cacchione et al. 1999 
C5     Eel river mud, susp sed and bedforms - Ogston and Sternberg 1999 
C6     sediment suspension events WC - Wiberg et al. 2002 
C7    (U)C sediment suspension events (SSE) - Lynch et al. 1997 
C8    C grased long-term modelling from SSE data - Harris and Wiberg 1997 
Northern Gulf of Mexico      
G1     fair / storm SSE - Pepper and Stone 2002 
G2    UC WC boundary layers and SSE - Wright et al. 1997 



Oceania       
O1 Aus    UC sed advection from breakerzone to shelf - Black et al. 1995 
O2 NZ    UC 

nearbed 
suspension and sheet flow - Black and Vincent 2001 

O3 NZ    UC reference concentr measured+predicted - Green and Black 1999 
O4 Aus 
+NZ 

   grased 35m-depth sand belt explanation - Black and Oldman 1999 

United Kingdom       
U1    UC storm sed transp, concentrat, roughness - Green et al. 1995 
Belgium       
B1    grased bedforms on banks, current-dominated no Van Lancker et al. 2000, 

V.Lancker and Jacobs 2000 
B2    grased suspended sed transp WC over banks susp. transp. Vincent et al. 1998 
B3    UC WC stress and susp on banks, model no Williams et al. 1999 
B4    UC sed transp meas+predict in storms ripples and 

bedl. transp. 
Williams and Rose 2001 

Ebro Delta       
E1    UC grased sed transp gradients no see text 
The Netherlands       
N1     sed transp components + directions  

in and just outside surfzone 
susp. transp. Ruessink 1998, Houwman 

2000, Ruess. et al. 1998,99 
N2    grased grain size sorting patterns in/out surfz. - Guillén and Hoekstra 

1996,97 
N3     modelling of long-term sand budgets - Van Rijn 1997 
N4    U fair-weather currents, sed transp and 

bedforms on shoreface-connected ridges 
bedl. transp. Van de Meene 1994,  

Van de Meene et al. 1996,  
VdM and Van Rijn 2000a 

N5     currents from tide, waves and density-
diff of Rhine fresh water 

- Van der Giessen et al. 1990 
De Ruiter et al. 1992, 97 
Simpson and Souza 1995 

N6     bedload transp (also Nova Scotia) - Huntley et al. 1991 
 
* This column denotes whether current profiles and/or concentration profiles were measured, and whether graded sediment occurs at the location and is 
considered in the publication.



 
Set burst-avg. 

data  avail.? 
water depth 
(m) 

grain size 
(mm) 

wave height 
(range m) 

wave period 
(s)  

current 
velocity (m/s) 

UC profs, 
grad sed 

authors 

Lab 1 yes 4.5 0.33 0.5 – 1.2 
(only irreg.) 

5  
(only irreg.) 

0 UC grased Thorne et al. 2002 

Lab2 yes 4 0.24 0.5 – 1.6 6.5 (reg, 
irreg, groups) 

0 UC grased Vincent and Hanes 2002 

(Apart from the SEDMOC database) 


